Skip to main content
Log in

Estimation of intra-cluster correlation coefficient via the failure of Bartlett’s second identity

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

A new means of estimating the correlation coefficient for cluster binary data in the regression settings is introduced. The creation of this method is founded upon the violation of Bartlett’s second identity when adopting the binomial distributions to model binary data that are correlated. The new methodology applies to any sensible link functions that connect the success probability and covariates. One can easily implement the procedure by using any statistical software providing the naïve and the sandwich covariance matrices for regression parameter estimates. Simulations and real data analyses are used to demonstrate the efficacy of our new procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Birnbaum LS, Harris MW, Stocking LM, Clark AM, Morrissey RE (1989) Retinoic acid selectively enhances teratogenesis in C57BL/6N mice. Toxicol Appl Pharmacol 98:487–500

    Article  Google Scholar 

  • Birnbaum LS, Morrissey RE, Harris MW (1991) Teratogenic effects of 2,3,7,8-tetrabromodibenzo-p-dioxin and three polybrominated dibenzofurans in C57BL/6N mice. Toxicol Appl Pharmacol 107:141–192

    Article  Google Scholar 

  • Blizzard L, Hosmer DW (2006) Parameter estimation and goodness-of-fit in log binomial regression. Biom J 48:5–22

    Article  MathSciNet  Google Scholar 

  • Crowder MJ (1978) Beta-binomial ANOVA for proportions. J R Stat Soc Ser C 27:34–37

    Google Scholar 

  • Heindel JJ, Price CJ, Field EA, Marr MC, Myers CB, Morrissey RE, Schwetz BA (1992) Developmental toxicity of boric acid in mice and rats. Fundam Appl Toxicol 18:266–277

    Article  Google Scholar 

  • Lee Y (2004) Estimating intraclass correlation for binary data using extended quasi-likelihood. Stat Model 4:113–126

    Article  MathSciNet  MATH  Google Scholar 

  • Liang KY, Zeger SL, Qaqish B (1992) Multivariate regression analyses for categorical data (with discussion). J Roy Stat Soc B 54:3–40

    Google Scholar 

  • McCullagh P (1983) Quasi-likelihood functions. Ann Stat 11:59–67

    Article  MathSciNet  MATH  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, London

    MATH  Google Scholar 

  • Presnell B, Boos DD (2004) The IOS test for model misspecification. J Am Stat Assoc 99:216–227

    Article  MathSciNet  MATH  Google Scholar 

  • Qaqish BF (2003) A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations. Biometrika 90:455–463

    Article  MathSciNet  MATH  Google Scholar 

  • Ridout MS, Demétrio CGB, Firth D (1999) Estimating intraclass correlation for binary data. Biometrics 55:137–148

    Article  MATH  Google Scholar 

  • Slaton TL, Piegorsch WW, Durham SD (2000) Estimation and testing with overdispersed proportions using the beta-logistic regression model of heckman and willis. Biometrics 56:125–133

    Article  MATH  Google Scholar 

  • Stefanski LA, Boos DD (2002) The calculus of M-estimation. Am Stat 56:29–38

    Article  MathSciNet  Google Scholar 

  • Weil CS (1970) Selection of the valid number of sampling units and a consideration of their combination in toxicological studies involving reproduction, teratogenesis or carcinogenesis. Food Cosmet Toxicol 8:177–182

    Article  MathSciNet  Google Scholar 

  • Willams DA (1975) The analysis of binary responses from toxicological experiments involving reproduction and teratogenicity. Biometrics 31:949–952

    Article  Google Scholar 

  • Zou G, Donner A (2004) Confidence interval estimation of the intraclass correlation. Biometrics 60:807–811

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by grant NSC 100-2118-M-008-001-MY2 of the National Science Council, and National Central University-Land Seed Hospital Joint Research grant NCU-LSH-100-A-005, Taiwan, R.O.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-Shan Tsou.

Appendix

Appendix

As remarked by Presnell and Boos (2004), the asymptotic variance of \(trace(\widehat{I}^{-1}\widehat{V})\) is equal to the bottom right element of \(C^{-1}D(C^{-1})^{t}/m\), where C and D are \(6\times 6\) matrices, with

$$\begin{aligned} C=\left({{\begin{array}{ccc} {-I}&\quad 0&\quad 0 \\ {E(\partial vech({l}^{\prime \prime })/\partial \beta ^{t})}&\quad {-H_q (I\otimes I)G_q }&\quad 0 \\ {2E({l}^{\prime t}I^{-1}{l}^{\prime \prime })}&\quad {(vech[2E({l}^{\prime }{l}^{\prime t})-diag\{E({l}^{\prime }{l}^{\prime t})\}])^{t}}&\quad {-1} \\ \end{array} }} \right) \end{aligned}$$

and D having elements denoted by \(D_{ij} ,i,j=1,2,3\) introduced later.

Consider a simple regression model with \(\eta _i =\beta _0 + x_i \beta _1\). The log likelihood function is

$$\begin{aligned} l(\beta )=\sum _{i=1}^m {l_i (\beta )=} \sum _{i=1}^m {\left[{y_i \log \left({\frac{p_i}{1-p_i}}\right)+n_i \log \left({1-p_i} \right)}\right]} +\sum _{i=1}^m {\log } \left({{\begin{array}{c} {n_i } \\ {y_i } \\ \end{array}}} \right). \end{aligned}$$

For simplicity, we will use \(l_i\) to denote \(l_i(\beta )\).

We first let \({p}^{\prime }_i\) and \(p_i^{\prime \prime }\) denote the first and second derivatives of\(p_i \)with respect to \(\beta \). Then \(l_i^{\prime }=\partial l_i /\partial \beta =w_i [1,x_i]^{t}\), where \(w_i =(y_i -n_i p_i){p}^{\prime }_i /\left({p_i (1-p_i)} \right)\) and

$$\begin{aligned} l_i^{\prime \prime } =\partial ^{2}l_i / \partial \beta \partial \beta ^{t}= w_i^{\prime } \left[{{\begin{array}{cc} 1&{x_i} \\ {x_i}&{x_i^2} \\ \end{array}}} \right], \end{aligned}$$

where

$$\begin{aligned} w_i^{\prime } = \frac{{p}^{\prime \prime }_i (y_i -n_i p_i)-n_i {p}_i ^{\prime 2}}{p_i (1-p_i)}-\frac{{p}_i^{\prime 2}(y_i -n_i p_i )(1 -2p_i)}{[p_i (1-p_i)]^{2}}, \end{aligned}$$

which is the derivative of \(w_i\) with respect to \(p_i\).

Note that if the logistic function is employed, then \(p_i =e^{\eta _i}/(1+e^{\eta _i})\) giving \({p}^{\prime }_i = p_i\left({1-p_i} \right)\) and \({p}^{\prime \prime }_i = p_i\left({1-p_i}\right)(1-2p_i)\).

Let \(I^{-1}\) denote the inverse of the matrix \(I=-E(l^{\prime \prime })=\frac{1}{m}\sum _{i=1}^m {\frac{n_i {p}^{\prime 2}_i}{p_i (1-p_i)} \left[{{\begin{array}{cc} 1&{x_i} \\ {x_i}&{x_i^2} \\ \end{array}}} \right]}\). One can show that

$$\begin{aligned} E\left[{\frac{\partial }{\partial \beta ^{t}}vech(l^{\prime \prime })} \right]&= \frac{1}{m}\sum _{i=1}^m {\left({\frac{2n_i {p}_i^{\prime 3}(1-2p_i)}{[p_i (1-p_i)]^{2}}-\frac{3n_i {p}^{\prime }_i {p}^{\prime \prime }_i}{p_i (1-p_i)}} \right) \left[{{\begin{array}{cc} 1&{x_i} \\ {x_i}&{x_i^2} \\ {x_i^2}&{x_i^3} \\ \end{array}}} \right]},\\ -H_q (I\otimes I)G_q&= \left[{{\begin{array}{cccc} 1&0&0&0 \\ 0&1&0&0 \\ 0&0&0&1 \\ \end{array}}}\right] \left[{{\begin{array}{cc} {{\begin{array}{cc} {I_{11}^{2}}&{I_{11} I_{12}} \\ {I_{11} I_{12}}&{I_{22}^{2}} \\ \end{array}}}&{{\begin{array}{cc} {I_{11} I_{12}}&{I_{12}^{2}} \\ {I_{12}^{2}}&{I_{12} I_{22}} \\ \end{array}}} \\ {{\begin{array}{cc} {I_{11} I_{12}}&{I_{12} ^{2}} \\ {I_{12}^{2}}&{I_{12} I_{22}} \\ \end{array}}}&{{\begin{array}{cc} {I_{11} I_{22}}&{I_{12} I_{22}} \\ {I_{12} I_{22}}&{I_{22}^{2}} \\ \end{array}}} \\ \end{array}}}\right] \left[{{\begin{array}{ccc} 1&0&0 \\ 0&1&0 \\ 0&1&0 \\ 0&0&1 \\ \end{array}}} \right], \end{aligned}$$

where \(I_{ij}\) denotes the \(i\text{-}j\text{ th}\) element of \(I\), and

$$\begin{aligned} E(l^{\prime t}I^{-1}l^{\prime \prime })&= \frac{1}{m}\sum _{i=1}^m \frac{Var(Y_i)\left[{{p}^{\prime }_i {p}^{\prime \prime }_i p_i (1-p_i)-{p}_i ^{\prime 3}(1-2p_i)} \right]}{[p_i (1-p_i)]^{3}}\\&\quad \left\{ {\left[{1,x_i}\right]I^{-1} \left[{{\begin{array}{cc} 1&{x_i} \\ {x_i}&{x_i^2} \\ \end{array}}}\right]}\right\} . \end{aligned}$$

The sub-matrices \(D_{ij},i,j=1,2,3\) constituting \(D\) are, respectively,

$$\begin{aligned} D_{11}&= E(l^{\prime }l^{\prime t})=\frac{1}{m}\sum _{i=1}^m {\frac{Var(Y_i){p}_i^{\prime 2}}{[p_i (1-p_i)]^{2}} \left[{{\begin{array}{cc} 1&{x_i} \\ {x_i}&{x_i^2} \\ \end{array}}} \right]},\\ D_{12}&= D_{21}^{t}=E\{{l}^{\prime }(vech{l}^{\prime \prime })^{t}\} \text{=}\frac{\text{1}}{\text{ m}}\sum _{i=1}^m \frac{Var(Y_i)[{p}^{\prime }_i {p}^{\prime \prime }_i p_i(1-p_i)-{p}_i^{\prime 3}(1-2p_i)]}{[p_i(1-p_i)]^{3}}\\&\qquad \qquad \qquad \qquad \qquad \qquad \left[{{\begin{array}{ccc} 1&{x_i}&{x_i^2} \\ {x_i}&{x_i^2}&{x_i^3} \\ \end{array}}} \right],\\ D_{13}&= D_{31}^{t} = E(l^{\prime }l^{\prime t}I^{-1}l^{\prime }) = \frac{1}{m}\sum _{i=1}^{m} \frac{E(Y_i -n_i p_i)^{3}{p}_i^{\prime 3}}{[p_i (1-p_i)]^{3}} \\&\qquad \qquad \qquad \qquad \qquad \qquad \times \left\{ {\left[{{\begin{array}{cc} 1&x_i \\ x_i&x_i^2 \\ \end{array}}}\right] I^{-1} \left[{{\begin{array}{c} 1 \\ x_i \\ \end{array}}}\right]}\right\} ,\\ D_{22}&= E\{(vechl^{\prime \prime })(vechl^{\prime \prime })^{t}\}-(vech(I)(vech(I))^{t} \\&= \frac{1}{m}\sum _{i=1}^m {E({w}_i^{\prime 2}) \left[{{\begin{array}{ccc} 1&{x_i}&{x_i^2} \\ {x_i}&{x_i^2}&{x_i^3} \\ {x_i^2}&{x_i^3}&{x_i^4} \\ \end{array}}}\right]- \left[{{\begin{array}{ccc} {I_{11}^{2}}&{I_{11} I_{12}}&{I_{11} I_{22}} \\ {I_{11} I_{12}}&{I_{12}^{2}}&{I_{12} I_{22}} \\ {I_{11} I_{22}}&{I_{12} I_{22}}&{I_{22}^{2}} \\ \end{array}}} \right]}, \end{aligned}$$

where \(E({w}_i^{\prime 2})=Var(Y_i)\left[{\frac{{p}^{\prime \prime 2} +n_i^{2}{p}_i^{\prime 4}}{[p_i (1-p_i)]^{2}}-\frac{2{p}^{\prime \prime }_i ({p}_i ^{\prime 2}-2p_i {p}_i^{\prime 2})}{[p_i (1-p_i)]^{3}}+\frac{({p}_i ^{\prime 2}-2p_i {p}_i^{\prime 2})^{2}}{[p_i (1-p_i)]^{4}}} \right]\),

$$\begin{aligned} D_{23}&= D_{32} ^{t}=E\{l^{\prime t}I^{-1}l^{\prime }(vech(l^{\prime \prime }))\}+trace(I^{-1}V)(vech(I))\\&= \frac{1}{m}\sum _{i=1}^m {E(w_i^2 {w}^{\prime }_i)\left\{ {\left[{1,x_i} \right]I^{-1} \left[{{\begin{array}{c} 1 \\ x_i \\ \end{array}}}\right] \left[{{\begin{array}{c} 1 \\ x_i\\ x_i^2\\ \end{array}}}\right]}\right\} +trace(I^{-1}V) \left[{{\begin{array}{c} {I_{11}} \\ {I_{12}} \\ {I_{22}} \\ \end{array}}} \right]}, \\ \end{aligned}$$

where \(E(w_i^2 {w}^{\prime }_i)=\frac{E(Y_i -n_i p_i)^{3}{p}_i ^{\prime 2}{p}^{\prime \prime }_i}{[p_i (1-p_i)]^{3}}-\frac{Var(Y_i)n_i {p}_i^{\prime 4}}{[p_i (1-p_i)]^{3}}-\frac{E(Y_i -n_i p_i)^{3}{p}_i ^{\prime 4}(1-2p_i)}{[p_i (1-p_i)]^{4}}\), and

$$\begin{aligned} D_{33}&= E(l^{\prime t}I^{-1}l^{\prime })^{2}-[trace(I^{-1}V)]^{2} =\frac{1}{m}\sum _{i=1}^m \frac{E(Y_i -n_i p_i )^{4}{p}^{\prime 4}_i}{[p_i (1-p_i)]^{4}}\\&\left\{ {\left[{1,x_i} \right]I^{-1} \left[{{\begin{array}{c} 1 \\ {x_i} \\ \end{array}}}\right]}\right\} ^{2} -[trace(I^{-1}V)]^{2}. \end{aligned}$$

Note that \(D_{33}\) is a scalar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsou, TS., Chen, WC. Estimation of intra-cluster correlation coefficient via the failure of Bartlett’s second identity. Comput Stat 28, 1681–1698 (2013). https://doi.org/10.1007/s00180-012-0372-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-012-0372-7

Keywords

Navigation