Skip to main content
Log in

Asymptotic properties of the Bayes modal estimators of item parameters in item response theory

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Asymptotic cumulants of the Bayes modal estimators of item parameters using marginal likelihood in item response theory are derived up to the fourth order with added higher-order asymptotic variances under possible model misspecification. Among them, only the first asymptotic cumulant and the higher-order asymptotic variance for an estimator are different from those by maximum likelihood. Corresponding results for studentized Bayes estimators and asymptotically bias-corrected ones are also obtained. It was found that all the asymptotic cumulants of the bias-corrected Bayes estimator up to the fourth order and the higher-order asymptotic variance are identical to those by maximum likelihood with bias correction. Numerical illustrations are given with simulations in the case when the 2-parameter logistic model holds. In the numerical illustrations, the maximum likelihood and Bayes estimators are used, where the same independent log-normal priors are employed for discriminant parameters and the hierarchical model is adopted for the prior of difficulty parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen EB (1973) A goodness of fit test for the Rasch model. Psychometrika 38:123–140

    Article  MathSciNet  MATH  Google Scholar 

  • Baker FB (1990) Some observations on the metric of PC-BILOG results. Appl Psychol Meas 14:139–150

    Article  Google Scholar 

  • Baker FB, Kim S-H (2004) Item response theory-parameter estimation techniques, 2nd edn. Dekker, New York

  • Bhattacharya RN, Ranga Rao R (1986) Normal approximation and asymptotic expansions (reprint ed.). Krieger, Malabar, FL

  • Bock RD, Aitkin M (1981) Marginal maximum likelihood estimation of item parameters: application of an EM algorithm. Psychometrika 46:443–459

    Article  MathSciNet  Google Scholar 

  • Bock RD, Lieberman M (1970) Fitting a response model for \(n\) dichotomously scored items. Psychometrika 35:179–197

    Article  Google Scholar 

  • Bock RD, Moustaki I (2007) Item response theory in a general framework. In: Rao CR, Sinharay S (eds) Handbook of statistics, vol. 26. psychometrics. Elsevier, New York, pp 469–513

    Google Scholar 

  • Brown LD, Cai TT, DasGupta A (2002) Confidence interval for a binomial proportion and asymptotic expansions. Ann Stat 30:160–201

    Article  MathSciNet  MATH  Google Scholar 

  • Esséen C-G (1945) Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law. Acta Math 77:1–125

    Article  MathSciNet  MATH  Google Scholar 

  • Feller W (1971) An introduction to probability theory and its applications, vol II, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Firth D (1993) Bias reduction of maximum likelihood estimates. Biometrika 80:27–38

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher RA (1956) Statistical methods and scientific inference. Oliver and Boyd, Edinburgh

    MATH  Google Scholar 

  • Fox J-P (2010) Bayesian item response modeling: theory and applications. Springer, New York

    Book  Google Scholar 

  • Hall P (1982) Improving the normal approximation when constructing one-sided confidence intervals for binomial or Poisson parameters. Biometrika 69:647–652

    Article  MathSciNet  MATH  Google Scholar 

  • Hall P (1992) The bootstrap and Edgeworth expansion. Springer, New York. Corrected printing, 1997

  • Jeffreys H (1946) An invariant form for the prior probability in estimation problems. Proc R Soc Lond Ser A 186:453–461

    Article  MathSciNet  MATH  Google Scholar 

  • Jeffreys H (1961) Theory of probability, 3rd edn. Clarendon, Oxford

    MATH  Google Scholar 

  • Kim S-H, Cohen AS, Baker FB, Subkoviak MJ, Leonard T (1994) An investigation of hierarchical Bayes procedures in item response theory. Psychometrika 59:405–421

    Article  MATH  Google Scholar 

  • Kolassa JE (1989) Topics in series approximations to distribution functions. Unpublished doctoral dissertation, Department of Statistics, The University of Chicago, Chicago, IL

  • Kolassa JE (2006) Series approximation methods in statistics, 3rd edn. Springer, New York

    MATH  Google Scholar 

  • Kolassa JE, McCullagh P (1990) Edgeworth series for lattice distributions. Ann Stat 18:981–985

    Article  MathSciNet  MATH  Google Scholar 

  • Lindley DV, Smith AFM (1972) Bayes estimates for the linear model (with discussion). J R Stat Soc B 34:1–41

    MathSciNet  MATH  Google Scholar 

  • Lord FM (1980) Applications of item response theory to practical testing problems. Erlbaum, Hillsdale

    Google Scholar 

  • Lord FM, Novick MR (1968) Statistical theories of mental test scores. Addison, Reading, MA

    MATH  Google Scholar 

  • Mislevy RJ (1986) Bayes modal estimation in item response models. Psychometrika 51:177–195

    Article  MathSciNet  MATH  Google Scholar 

  • Mislevy RJ, Bock RD (1982, July) Implementation of the EM algorithm in the estimation of item parameters: The BILOG computer program. Proceedings of the 1982 Item Response Theory and Computerized Adaptive Testing Conference. Minneapolis, MN, pp 189–202

  • Ogasawara H (2009) Asymptotic cumulants of the parameter estimators in item response theory. Comput Stat 24:313–331

    Article  MathSciNet  MATH  Google Scholar 

  • Ogasawara H (2010a) Errata of the paper “Asymptotic cumulants of the parameter estimators in item response theory”. Unpublished document. Available at http://www.res.otaru-uc.ac.jp/~hogasa/, http://barrel.ih.otaru-uc.ac.jp/

  • Ogasawara H (2010b) Asymptotic expansions for the pivots using log-likelihood derivatives with an application in item response theory. J Multivar Anal 101:2149–2167

    Article  MathSciNet  MATH  Google Scholar 

  • Ogasawara H (2012) Cornish-Fisher expansions using sample cumulants and monotonic transformations. J Multiv Anal 103:1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Ogasawara H (2014) Supplement to the paper “Asymptotic properties of the Bayes modal estimators of item parameters in item response theory”. To appear in Economic Review (Otaru University of Commerce). Available at http://www.res.otaru-uc.ac.jp/~hogasa/, http://barrel.ih.otaru-uc.ac.jp/

  • Shigemasu K, Fujimori S (1984) Joint estimates of parameters in item response theory. Jpn J Educ Psychol 32:266–275 in Japanese

    Google Scholar 

  • Stroud AH, Sechrest D (1966) Gaussian quadrature formulas. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  • Stuart A, Ord JK (1994) Kendall’s advanced theory of statistics: distribution theory, vol 1, 6th edn. Arnold, London

    Google Scholar 

  • Swaminathan H (2005) Bayesian item response theory estimation. In: Everitt BS, Howell DC (eds) Encyclopedia of statistics in behavioral sciences. Wiley, New York, pp 134–139

    Google Scholar 

  • Swaminathan H, Gifford JA (1981, June) Bayesian estimation in the three-parameter logistic model. Paper presented at the annual meeting of the Psychometric Society. Chapel Hill, NC

  • Swaminathan H, Gifford JA (1982) Bayesian estimation in the Rasch model. J Educ Stat 7:175–191

    Article  Google Scholar 

  • Swaminathan H, Gifford JA (1985) Bayesian estimation in the two-parameter logistic model. Psychometrika 50:349–364

    Article  MATH  Google Scholar 

  • Swaminathan H, Gifford JA (1986) Bayesian estimation in the three-parameter logistic model. Psychometrika 51:589–601

    Article  MathSciNet  MATH  Google Scholar 

  • Thissen D (1982) Marginal maximum likelihood estimation for the one-parameter logistic model. Psychometrika 47:175–186

    Article  MATH  Google Scholar 

  • Tsutakawa RK (1992) Prior distribution for item response curves. British J Math Stat Psychol 45:51–74

    Article  MathSciNet  MATH  Google Scholar 

  • Tsutakawa RK, Lin HY (1986) Bayesian estimation of item response curves. Psychometrika 51:251–267

    Article  MathSciNet  MATH  Google Scholar 

  • Warm TA (1989) Weighted likelihood estimation of ability in item response theory. Psychometrika 54:427–450

    Article  MathSciNet  Google Scholar 

  • Wold H (1934) Sheppard’s correction formulae in several variables. Skandinavisk Aktuarietidskrift 17:248–255

    Google Scholar 

  • Zeng L (1997) Implementation of marginal Bayesian estimation with four-parameter beta prior distributions. Appl Psychol Meas 21:143–156

    Article  Google Scholar 

  • Zhou X-H, Tsao M, Qin G (2004) New intervals for the difference between two independent binomial proportions. J Stat Plan Inference 123:97–115

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou XH, Li CM, Yang Z (2008) Improving interval estimation of binomial proportions. Philos Trans R Soc A 366:2405–2418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Ogasawara.

Additional information

This work was partially supported by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology, No.23500341. Author’s address: Department of Information and Management Science, Otaru University of Commerce, 3-5-21, Midori, Otaru 047-8501, Japan. Email: hogasa@res.otaru-uc.ac.jp.

Appendix

Appendix

1.1 Proof of Theorem 1

Equation (3.6) is summarized as

$$\begin{aligned} w^{*}\equiv N^{1/2}({\hat{\alpha }}_{\mathrm{W}} -\alpha _0) =N^{-1/2}\eta _0 +\sum _{i=1}^3 {N^{-(i-1)/2}} {{\varvec{\uplambda }}}^{(i)} {}^{\prime }\mathbf{m}^{(i)}+O_p (N^{-3/2}), \end{aligned}$$
(8.1)

where \(\eta _0 =O(1), {{\varvec{\uplambda }}}^{(i)}=O(1)\) and \(\mathbf{m}^{(i)}=O_p (1) (i=1,2,3)\), which are

$$\begin{aligned} \eta _0&= -({{\varvec{\Lambda }}}^{-1}\mathbf{q}_0^*)_{(\alpha )}, {{\varvec{\uplambda }}}^{(1)}=\frac{\partial \alpha _0 }{\partial {{\varvec{\uppi }}}_{\mathrm{T}} }, {{\varvec{\uplambda }}}^{(2)}=\frac{1}{2}\left\{ {\left( {\frac{\partial }{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}} \right) ^{\langle 2\rangle }\alpha _0} \right\} , \nonumber \\ {{\varvec{\uplambda }}}^{(3)}&= \left[ {\frac{1}{6}\left\{ {\left( {\frac{\partial }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}} \right) ^{\langle 3\rangle }\alpha _0 } \right\} ,\frac{\partial \alpha _{\Delta \mathrm{W}} }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}}\right] ^{{\prime }}, \\ \mathbf{m}^{(1)}&= \mathbf{u}, \mathbf{m}^{(2)}=\mathbf{u}^{\langle 2\rangle }, \mathbf{m}^{(3)}=(\mathbf{u}^{\langle 3\rangle \prime },\mathbf{u}^{\prime })^{\prime }.\nonumber \end{aligned}$$
(8.2)

In (8.1), the differences between \(w^{*}\) for \({\hat{\alpha }}_{\mathrm{W}}\) and \(w^{*}\) for \({\hat{\alpha }}_{\mathrm{ML}}\), say \(w_{\mathrm{ML}}^*\), are found in \(\eta _0\) and \(\partial \alpha _{\Delta \mathrm{W}} /\partial {{\varvec{\uppi }}}_{\mathrm{T}}\) of \({{\varvec{\uplambda }}}^{(3)}\) in (8.2), which are null in the case of \(w_{\mathrm{ML}}^*\).

Note that the fixed term \(N^{-1/2}\eta _0\) in (8.1) is irrelevant to all the cumulants of \(w^{*}\) except the first one. Define \(\kappa _i (\cdot )\) as the \(i\)th cumulant of the argument. Then, from (8.1) and (8.2), it follows that

$$\begin{aligned} \kappa _1 (w^{*})&= N^{-1/2}\eta _0 +N^{-1/2}\beta _{\mathrm{ML}1} +O(N^{-3/2}), \nonumber \\ \kappa _2 (w^{*})&= \beta _{\mathrm{ML}2} +N^{-1}\left( {\beta _{\mathrm{ML}\Delta 2} +2\frac{\partial \alpha _0 }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}{{\varvec{\Omega }}}_{\mathrm{T}} \frac{\partial \alpha _{\Delta \mathrm{W}} }{\partial {{\varvec{\uppi }}}_{\mathrm{T}} }} \right) +O(N^{-2}), \\ \kappa _3 (w^{*})&= N^{-1/2}\beta _{\mathrm{ML}3} +O(N^{-3/2}),\nonumber \end{aligned}$$
(8.3)

and

$$\begin{aligned} \kappa _4 (w^{*})&= N^{-1}\left[ {\beta _{\mathrm{ML}4} +4\text{ E }\left\{ {\left( {\frac{\partial \alpha _0 }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}\mathbf{u}} \right) ^{3}\frac{\partial \alpha _{\Delta \mathrm{W}} }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}\mathbf{u}} \right\} -6\beta _{\mathrm{ML}2} (\beta _{\mathrm{W}\Delta 2} -\beta _{\mathrm{ML}\Delta 2} )} \right] \\&+O(N^{-2}) = N^{-1}\left( \beta _{\mathrm{ML}4} +4\times 3\beta _{\mathrm{ML}2} \frac{\partial \alpha _0 }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}{{\varvec{\Omega }}}_{\mathrm{T}} \frac{\partial \alpha _{\Delta \mathrm{W}} }{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}\right. \\&\left. -6\times 2\beta _{\mathrm{ML}2} \frac{\partial \alpha _0 }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}{{\varvec{\Omega }}}_{\mathrm{T}} \frac{\partial \alpha _{\Delta \mathrm{W}}}{\partial {{\varvec{\uppi }}}_{\mathrm{T}}} \right) +O(N^{-2}) =N^{-1}\beta _{\mathrm{ML}4} +O(N^{-2}), \end{aligned}$$

which gives (3.7), where the equality \(\beta _{\mathrm{W}3} =\beta _{\mathrm{ML}3}\) stems from the fact that the third asymptotic cumulant is given by \(N^{-(i-1)/2}{{\varvec{\uplambda }}}^{(i)} {}^{\prime }\mathbf{m}^{(i)} (i=1,2)\), which are common to \(w^{*}\) and \(w_{\mathrm{ML}}^*\).

1.2 Proof of Theorem 2

From (8.1) and (4.3) of Lemma 1, \(t_V\) is expanded as

$$\begin{aligned} t_V&= (N^{-1/2}\eta _0 +{{\varvec{\uplambda }}}^{(1)} {}^{\prime }\mathbf{m}^{(1)}+N^{-1/2}{{\varvec{\uplambda }}}^{(2)} {}^{\prime }\mathbf{m}^{(2)}+N^{-1}{{\varvec{\uplambda }}}^{(3)} {}^{\prime }\mathbf{m}^{(3)}) \nonumber \\&\ \times (v_{0\alpha \alpha }^{-1/2} + N^{-1}\eta _{V0} + \ N^{-1/2}{{\varvec{\uplambda }}}_{V}^{(1)} {}^{\prime }\mathbf{m}^{(1)}+N^{-1}{{\varvec{\uplambda }}}_{V}^{(2)} {}^{\prime }\mathbf{m}^{(2)})+O_p (N^{-3/2}) \nonumber \\&= N^{-1/2}\eta _0 v_{0\alpha \alpha }^{-1/2} +{{\varvec{\uplambda }}}^{(1)} {}^{\prime }v_{0\alpha \alpha }^{-1/2} \mathbf{m}^{(1)} \nonumber \\&\ +N^{-1/2}({{\varvec{\uplambda }}}^{(2)} {}^{\prime }v_{0\alpha \alpha }^{-1/2} +{{\varvec{\uplambda }}}^{(1)} {}^{\prime }\otimes {{\varvec{\uplambda }}}_{V}^{(1)} {}^{\prime })\mathbf{m}^{(1)\langle 2\rangle } (\text{ recall } \ \mathbf{m}^{(2)}=\mathbf{m}^{(1)\langle 2\rangle }) \nonumber \\&\ + N^{-1}({{\varvec{\uplambda }}}^{(3)} {}^{\prime }v_{0\alpha \alpha }^{-1/2}, \eta _0 {{\varvec{\uplambda }}}_{V}^{(1)} {}^{\prime }+\eta _{V0} {{\varvec{\uplambda }}}^{(1)} {}^{\prime }, {{\varvec{\uplambda }}}^{(2)} {}^{\prime }\otimes {{\varvec{\uplambda }}}_{V}^{(1)} {}^{\prime }+{{\varvec{\uplambda }}}^{(1)} {}^{\prime }\otimes {{\varvec{\uplambda }}}_{V}^{(2)} {}^{\prime }) \nonumber \\&\ \times (\mathbf{m}^{(3)} {}^{\prime }, \mathbf{m}^{(1)} {}^{\prime }, \mathbf{m}^{(1)\langle 3\rangle } {}^{\prime })^{\prime }+O_p (N^{-3/2}) \nonumber \\&= N^{-1/2}\eta _0 v_{0\alpha \alpha }^{-1/2} +{{\varvec{\uplambda }}}^{(1)} {}^{\prime }v_{0\alpha \alpha }^{-1/2} \mathbf{m}^{(1)} \nonumber \\&\ +N^{-1/2}({{\varvec{\uplambda }}}^{(2)} {}^{\prime }v_{0\alpha \alpha }^{-1/2} +{{\varvec{\uplambda }}}^{(1)} {}^{\prime }\otimes {{\varvec{\uplambda }}}_{V}^{(1)} {}^{\prime })\mathbf{m}^{(1)\langle 2\rangle } \nonumber \\&\ +N^{-1}\left[ {\left\{ {\frac{1}{6}\left( {\frac{\partial }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}} \right) ^{\langle 3\rangle }\alpha _0 } \right\} } v_{0\alpha \alpha }^{-1/2} +{{\varvec{\uplambda }}}^{(2)} {}^{\prime }\otimes {{\varvec{\uplambda }}}_{ V}^{(1)} {}^{\prime }+{{\varvec{\uplambda }}}^{(1)} {}^{\prime }\otimes {{\varvec{\uplambda }}}_{V}^{(2)} {}^{\prime }, \right. \nonumber \\&\left. {\frac{\partial \alpha _{\Delta \mathrm{W}} }{\partial {{\varvec{\uppi }}}_{\mathrm{T}} {}^{\prime }}v_{0\alpha \alpha }^{-1/2} +\eta _0 {{\varvec{\uplambda }}}_{V}^{(1)} {}^{\prime }+\eta _{V0} {{\varvec{\uplambda }}}^{(1)} {}^{\prime }} \right] (\mathbf{m}^{(1)\langle 3\rangle } {}^{\prime }, \mathbf{m}^{(1)} {}^{\prime })^{\prime }+O_p (N^{-3/2})\nonumber \\&\equiv N^{-1/2}\eta _0 v_{0\alpha \alpha }^{-1/2} +\sum _{j=1}^3 {N^{-(j-1)/2}} {{\varvec{\uplambda }}}^{(Vj)} {}^{\prime }\mathbf{m}^{(j)}+O_p (N^{-3/2}). \end{aligned}$$
(8.4)

From (8.4), as in Theorem 1, we note that \({{\varvec{\uplambda }}}^{(Vj)} {}^{\prime }\mathbf{m}^{(j)} (j=1,2)\) are common to \(t_V\) for \({\hat{\alpha }}_{\mathrm{W}}\) and to \(t_V\) for \({\hat{\alpha }}_{\mathrm{ML}}\). Then,

$$\begin{aligned} \kappa _1 (t_V)&= N^{-1/2}\eta _0 v_{0\alpha \alpha }^{-1/2} +N^{-1/2}{\beta _{\mathrm{ML}1V}}^{\prime }+O(N^{-3/2}) \nonumber \\&= N^{-1/2}\left\{ -({{\varvec{\Lambda }}}^{-1}\mathbf{q}_0^*)_{(\alpha )} v_{0\alpha \alpha }^{-1/2} +{\beta _{\mathrm{ML}1V}}^{\prime }\right\} +O(N^{-3/2}), \nonumber \\ \kappa _2 (t_V)&= v_{0\alpha \alpha }^{-1} \beta _{\mathrm{ML}2} +N^{-1}\left[ {{\beta _{\mathrm{ML}\Delta 2V}}^{\prime }+2v_{0\alpha \alpha }^{-1} \frac{\partial \alpha _0 }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}{{\varvec{\Omega }}}_{\mathrm{T}} \frac{\partial \alpha _{\Delta \mathrm{W}}}{\partial {{\varvec{\uppi }}}_{\mathrm{T}} }} \right. \nonumber \\&\left. +2v_{0\alpha \alpha }^{-1/2} (\eta _0 {{\varvec{\uplambda }}}_{V}^{(1)} {}^{\prime }{{\varvec{\Omega }}}_{\mathrm{T}} {{\varvec{\uplambda }}}^{(1)}+\eta _{V0} \beta _{\mathrm{ML}2} )\right] +O(N^{-2}), \nonumber \\ \kappa _3 (t_V)&= N^{-1/2}{\beta _{\mathrm{ML}3V}}^{\prime } +O(N^{-3/2}), \text{ and } \nonumber \\ \kappa _4 (t_V)&= N^{-1}{\beta _{\mathrm{ML}4V}}^{\prime }+O(N^{-2}), \end{aligned}$$
(8.5)

which gives (4.4).

1.3 Proof of Theorem 4

Expand \(N^{1/2}({\hat{\alpha }}_{\mathrm{B}\text{- }\mathrm{C\, W}} -\alpha _0)\) as

$$\begin{aligned} N^{1/2}({\hat{\alpha }}_{\mathrm{B}\text{- }\mathrm{C\, W}} -\alpha _0)&= {{\varvec{\uplambda }}}^{(1)} {}^{\prime }\mathbf{m}^{(1)}+N^{-1/2}{{\varvec{\uplambda }}}^{(2)} {}^{\prime }\mathbf{m}^{(2)}\nonumber \\&\ -\frac{N^{-1/2}}{2}\text{ tr }\left( {\frac{\partial ^{2}\alpha _0 }{\partial {{\varvec{\uppi }}}_{\mathrm{T}} {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}{{\varvec{\Omega }}}_{\mathrm{T}}} \right) +N^{-1}{{\varvec{\uplambda }}}_{\mathrm{B}\text{- }\mathrm{C\, W}}^{(3)} {}^{\prime }\mathbf{m}^{(3)}\nonumber \\&\ +O_p (N^{-3/2}), \end{aligned}$$
(8.6)

where

$$\begin{aligned}&{{\varvec{\uplambda }}}_{\mathrm{B}\text{- }\mathrm{C}}^{(3)} \!=\! \left[ {\frac{1}{6}\left\{ {\left( {\frac{\partial }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}} \right) ^{\langle 2 \rangle }\alpha _0 } \right\} , \frac{\partial \alpha _{\Delta \mathrm{W}} }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}\!-\!\frac{\partial \beta _{\mathrm{W}1}}{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}} \right] ^{{\prime }} \text{ and } \end{aligned}$$
(8.7)
$$\begin{aligned}&\left. -\frac{\partial \beta _{\mathrm{W}1} }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }} \!=\! \frac{\partial ({\hat{{\varvec{\Lambda }}}}_{\mathrm{W}}^{-1} {\hat{\mathbf{q}}}_{\mathrm{W}}^*)_{(\alpha )} }{\partial \mathbf{p}^{\prime }}\right| _{\mathop {{\hat{{\varvec{\upalpha }}}}_{\mathrm{W}} \!=\!{{\varvec{\upalpha }}}_0}\limits _{\mathbf{p}\!=\!{{\varvec{\uppi }}}_{\mathrm{T}}}} \left. -\frac{1}{2}\frac{\partial }{\partial \mathbf{p}^{\prime }}\text{ tr }\left( {\frac{\partial ^{2}{\hat{\alpha }}_{\mathrm{W}} }{\partial \mathbf{p}\partial \mathbf{p}^{\prime }}{\hat{{\varvec{\Omega }}}}_{\mathrm{T}}} \right) \right| _{\mathop {{\hat{{\varvec{\upalpha }}}}_{\mathrm{W}} \!=\!{{\varvec{\upalpha }}}_0}\limits _{\mathbf{p}={{\varvec{\uppi }}}_{\mathrm{T}}}} \nonumber \\&=\left\{ -\left( \left. {{\varvec{\Lambda }}}^{-1}\frac{\partial {\hat{{\varvec{\Lambda }}}}}{\partial p_1}\right| _{\mathop {{\hat{{\varvec{\upalpha }}}}_{\mathrm{W}} ={{\varvec{\upalpha }}}_0}\limits _{\mathbf{p}={{\varvec{\uppi }}}_{\mathrm{T}}}} {{\varvec{\Lambda }}}^{-1}\mathbf{q}_0^*,\ldots , {{{\varvec{\Lambda }}}^{-1}\left. \frac{\partial {\hat{{\varvec{\Lambda }}}}}{\partial p_K}\right| _{\mathop {{\hat{{\varvec{\upalpha }}}}_{\mathrm{W}} ={{\varvec{\upalpha }}}_0}\limits _{\mathbf{p}={{\varvec{\uppi }}}_{\mathrm{T}}}} {{\varvec{\Lambda }}}^{-1}\mathbf{q}_0^*} \right) \right. \nonumber \\&\quad \left. +{{\varvec{\Lambda }}}^{-1}\left. \frac{\partial {\hat{\mathbf{q}}}_{\mathrm{W}}^*}{\partial \mathbf{p}{\prime }}\right| _{\mathop {{\hat{{\varvec{\upalpha }}}}_{\mathrm{W}} ={{\varvec{\upalpha }}}_0}\limits _{\mathbf{p}={{\varvec{\uppi }}}_{\mathrm{T}}}} \right\} _{(\alpha )} -\frac{1}{2}\frac{\partial }{\partial \mathbf{p}^{\prime }}\text{ tr }\left. \left( {\frac{\partial ^{2}{\hat{\alpha }}_{\mathrm{W}} }{\partial \mathbf{p}\partial \mathbf{p}^{\prime }}{\hat{{\varvec{\Omega }}}}_{\mathrm{T}} } \right) \right| _{\mathop {{\hat{{\varvec{\upalpha }}}}_{\mathrm{W}} ={{\varvec{\upalpha }}}_0}\limits _{\mathbf{p}={{\varvec{\uppi }}}_{\mathrm{T}}}} \nonumber \\&=-\frac{\partial \alpha _{\Delta \mathrm{W}} }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}-\frac{1}{2}\frac{\partial }{\partial {{{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}\text{ tr }\left( {\frac{\partial ^{2}\alpha _0 }{\partial {{\varvec{\uppi }}}_{\mathrm{T}} {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}{{\varvec{\Omega }}}_{\mathrm{T}} } \right) , \end{aligned}$$
(8.8)

(see (3.4) with (3.2) and (3.3)), which gives

$$\begin{aligned} \frac{\partial \alpha _{\Delta \mathrm{W}} }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}-\frac{\partial \beta _{\mathrm{W}1} }{\partial {{{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}&= -\frac{1}{2}\left\{ {\text{ tr }\left( {\frac{\partial ^{3}\alpha _0 }{\partial {{\varvec{\uppi }}}_{\mathrm{T}} {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }\partial \pi _{\mathrm{T}1} }{{\varvec{\Omega }}}_{\mathrm{T}}} \right) ,\ldots ,\text{ tr }\left( {\frac{\partial ^{3}\alpha _0}{\partial {{\varvec{\uppi }}}_{\mathrm{T}} {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }\partial \pi _{\mathrm{T}K} }{{\varvec{\Omega }}}_{\mathrm{T}} } \right) } \right\} \nonumber \\&\quad -\frac{1}{2}\left\{ {\text{ tr }\left( {\frac{\partial ^{2}\alpha _0 }{\partial {{\varvec{\uppi }}}_{\mathrm{T}} {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}\frac{\partial {{\varvec{\Omega }}}_{\mathrm{T}} }{\partial \pi _{\mathrm{T}1} }} \right) ,\ldots ,\text{ tr }\left( {\frac{\partial ^{2}\alpha _0 }{\partial {{\varvec{\uppi }}}_{\mathrm{T}} {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}\frac{\partial {{\varvec{\Omega }}}_{\mathrm{T}} }{\partial \pi _{\mathrm{T}K} }} \right) } \right\} \nonumber \\&= -\frac{\partial \beta _{\mathrm{ML}1}}{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}. \end{aligned}$$
(8.9)

From the last result, \({{\varvec{\uplambda }}}_{\mathrm{B}\text{- }\mathrm{C\, W}}^{(3)}\) becomes equal to \({{\varvec{\uplambda }}}_{\mathrm{B}\text{- }\mathrm{C\, ML}}^{(3)}\) of \({\hat{\alpha }}_{\mathrm{B}\text{- }\mathrm{C\, ML}}\) (the bias-corrected \({\hat{\alpha }}_{\mathrm{ML}})\), which gives (5.6).

1.4 Proof of Theorem 5

Replace \(\eta _0\) and \(\partial \alpha _{\Delta \mathrm{W}} /{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }\) of \({{\varvec{\uplambda }}}^{(3)}\) in (8.2) with \(-\frac{1}{2}\text{ tr }\left( {\frac{\partial ^{2}\alpha _0}{\partial {{\varvec{\uppi }}}_{\mathrm{T}} {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}{{\varvec{\Omega }}}_{\mathrm{T}}} \right) (\equiv \eta _{\mathrm{B}\text{- }\mathrm{C}\, 0} \equiv ({{\varvec{\upeta }}}_{\mathrm{B}\text{- }\mathrm{C}\, 0} )_{(\alpha )})\) in (8.6) and \(-\frac{\partial \beta _{\mathrm{ML}1} }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}\) of \({{\varvec{\uplambda }}}_{\mathrm{B}\text{- }\mathrm{C}}^{(3)}\) (see also (8.9)), respectively. Similarly, \(\eta _{V0}\) is to be replaced by \(\eta _{\mathrm{B}\text{- }\mathrm{C}\, V0}\), which is defined as \(\eta _{V0}\), where \({{\varvec{\upeta }}}_{\mathrm{B}\text{- }\mathrm{C}\, 0}\) is used instead of \({{\varvec{\upeta }}}_0\) (for the actual expressions of \(\eta _{\mathrm{B}\text{- }\mathrm{C}\, V0}\), see Ogasawara 2014, Section (e)). From the \(t_{\mathrm{B}\text{- }\mathrm{C}\, V}\) version of the expectation of \(t_V\) (see (8.4))

$$\begin{aligned} \text{ E }(t_{\mathrm{B}\text{- }\mathrm{C}\, V} )\!&= \!N^{-1/2}\left\{ {\!-\!\frac{1}{2}\text{ tr }\left( {\frac{\partial ^{2}\alpha _0}{\partial {{\varvec{\uppi }}}_{\mathrm{T}} {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}{{\varvec{\Omega }}}_{\mathrm{T}} } \right) } \right\} v_{0\alpha \alpha }^{-1/2} \!+\!{{\varvec{\uplambda }}}^{(1)} {}^{\prime }v_{0\alpha \alpha }^{-1/2} \text{ E }(\mathbf{m}^{(1)}) \nonumber \\&\!+\!N^{-1/2}({{\varvec{\uplambda }}}^{(2)} {}^{\prime }v_{0\alpha \alpha }^{-1/2} \!+\!{{\varvec{\uplambda }}}^{(1)} {}^{\prime }\otimes {{\varvec{\uplambda }}}_{V}^{(1)} {}^{\prime })\text{ E }(\mathbf{m}^{(1)\langle 2 \rangle })\!+\!O(N^{-3/2}) \nonumber \\ \!&= \!N^{-1/2}({{\varvec{\uplambda }}}^{(1)} {}^{\prime }\otimes {{\varvec{\uplambda }}}_{V}^{(1)} {}^{\prime })\text{ vec }({{\varvec{\Omega }}}_{\mathrm{T}})\!+\!O(N^{-3/2})\nonumber \\ \!&= \!N^{-1/2}{{\varvec{\uplambda }}}^{(1)} {}^{\prime }{{\varvec{\Omega }}}_{\mathrm{T}} {{\varvec{\uplambda }}}_{V}^{(1)} \!+\!O(N^{-3/2})\equiv N^{-1/2}{\beta _{\mathrm{B}\text{- }\mathrm{C\, W}1V}}^{\prime }\nonumber \\&+O(N^{-3/2}),\quad \quad \end{aligned}$$
(8.10)

where \(\text{ vec }(\cdot )\) is the vectorizing operator stacking columns of a matrix sequentially. Noting that \({{\varvec{\upeta }}}_{\mathrm{B}\text{- }\mathrm{C}\, 0}\) and, consequently, \(\eta _{\mathrm{B}\text{- }\mathrm{C}\, V0}\) are common to those by ML and BM, from (8.10) and the similar results in Theorem 2 (see (4.4)), the remaining asymptotic cumulants of \(t_{\mathrm{B}\text{- }\mathrm{C}\, V}\) are given as in (5.8).

1.5 Asymptotic cumulants of the bias-prevented estimator

Define \({\hat{\alpha }}_{\mathrm{B}\text{- }\mathrm{P}}\) that satisfies the condition:

$$\begin{aligned} \frac{\partial \hat{{l}}_{\mathrm{B}\text{- }\mathrm{P}} }{\partial {\hat{{\varvec{\upalpha }}}}_{\mathrm{B}\text{- }\mathrm{P}} }\equiv \frac{\partial \hat{{l}}_{\mathrm{ML}}}{\partial {\hat{{\varvec{\upalpha }}}}_{\mathrm{B}\text{- }\mathrm{P}} }+N^{-1}{\hat{\mathbf{q}}}_{\mathrm{B}\text{- }\mathrm{P}}^*=\mathbf{0}, \end{aligned}$$
(8.11)

where

$$\begin{aligned} \frac{\partial \hat{{l}}_{\mathrm{ML}}}{\partial {\hat{{\varvec{\upalpha }}}}_{\mathrm{B}\text{- }\mathrm{P}}}&= \sum _{k=1}^K {\frac{p_k }{\hat{{\pi }}_k}} \frac{\partial \pi _k }{\partial {\varvec{\upalpha }}}|_{{\varvec{\upalpha }}={\hat{{\varvec{\upalpha }}}}_{\mathrm{B}\text{- }\mathrm{P}}}, \hat{{\pi }}_k =\pi _k ({\hat{{\varvec{\upalpha }}}}_{\mathrm{B}\text{- }\mathrm{P}} ), {\hat{\mathbf{q}}}_{\mathrm{B}\text{- }\mathrm{P}}^*=\mathbf{q}^{*}({\hat{{\varvec{\upalpha }}}}_{\mathrm{B}\text{- }\mathrm{P}}, \mathbf{p})={\hat{{\varvec{\Lambda }}}}_{\mathrm{B}\text{- }\mathrm{P}} {\hat{{\varvec{\upbeta }}}}_{\mathrm{B}\text{- }\mathrm{P} 1}, \nonumber \\ {\hat{{\varvec{\Lambda }}}}_{\mathrm{B}\text{- }\mathrm{P}}&= \left. \frac{\partial ^{2}l_{\mathrm{ML}} }{\partial {\varvec{\upalpha }} {\partial {\varvec{\upalpha }}}^{\prime }}\right| _{\mathop {{\varvec{\upalpha }}={\hat{{\varvec{\upalpha }}}}_{\mathrm{B}\text{- }\mathrm{P}}}\limits _{\mathbf{p}=\mathbf{p}}} \text{ and } ({\hat{{\varvec{\upbeta }}}}_{\mathrm{B}\text{- }\mathrm{P}1})_{(\alpha )} ={\hat{\beta }}_{\mathrm{B}\text{- }\mathrm{P}1} =\frac{1}{2}\text{ tr }\left( {\frac{\partial ^{2}{\hat{\alpha }}_{\mathrm{B}\text{- }\mathrm{P}} }{\partial \mathbf{p} \partial \mathbf{p}^{\prime }}|_{\mathbf{p}=\mathbf{p}} {\hat{{\varvec{\Omega }}}}_{\mathrm{T}} } \right) .\nonumber \\ \end{aligned}$$
(8.12)

Theorem 6

Let \(w_{\mathrm{B}\text{- }\mathrm{P}}^*\equiv N^{1/2}({\hat{\alpha }}_{\mathrm{B}\text{- }\mathrm{P}} -\alpha _0)\) Then, the cumulants of \(w_{\mathrm{B}\text{- }\mathrm{P}}^*\) up to the fourth order are written as

$$\begin{aligned} \kappa _1 (w_{\mathrm{B}\text{- }\mathrm{P}}^*)&= O(N^{-3/2}) (\beta _{\mathrm{B}\text{- }\mathrm{P}1} =0), \nonumber \\ \kappa _2 (w_{\mathrm{B}\text{- }\mathrm{P}}^*)&= \beta _{\mathrm{ML}2} +N^{-1}\left( {\beta _{\mathrm{ML}\Delta 2} +2\frac{\partial \alpha _0 }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}{{\varvec{\Omega }}}_{\mathrm{T}} \frac{\partial \alpha _{\Delta \mathrm{B}\text{- }\mathrm{P}} }{\partial {{\varvec{\uppi }}}_{\mathrm{T}} }} \right) +O(N^{-2}) \nonumber \\&\left( {\beta _{\mathrm{B}\text{- }\mathrm{P} 2} =\beta _{\mathrm{ML}2} , \beta _{\mathrm{B}\text{- }\mathrm{P} \Delta 2} =\beta _{\mathrm{ML}\Delta 2} +2\frac{\partial \alpha _0 }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}{{\varvec{\Omega }}}_{\mathrm{T}} \frac{\partial \alpha _{\Delta \mathrm{B}\text{- }\mathrm{P}} }{\partial {{\varvec{\uppi }}}_{\mathrm{T}} }}\right) , \nonumber \\ \kappa _3 (w_{\mathrm{B}\text{- }\mathrm{P}}^*)&= N^{-1/2}\beta _{\mathrm{ML}3} +O(N^{-3/2}) (\beta _{\mathrm{B}\text{- }\mathrm{P}3} =\beta _{\mathrm{ML}3}) \nonumber \\ and\, \kappa _4 (w_{\mathrm{B}\text{- }\mathrm{P}}^*)&= N^{-1}\beta _{\mathrm{ML}4} +O(N^{-2}) (\beta _{\mathrm{B}\text{- }\mathrm{P} 4} =\beta _{\mathrm{ML}4} ). \end{aligned}$$
(8.13)

Proof

Define \({{\varvec{\upalpha }}}_{\mathrm{B}\text{- }\mathrm{P}}\) as a special case of \({{\varvec{\upalpha }}}_{\mathrm{W}}\) given by (2.5), and \(\mathbf{q}_{\mathrm{B}\text{- }\mathrm{P}0}^*={{\varvec{\Lambda }}} {{\varvec{\upbeta }}}_{\mathrm{ML}1}\) as a special case of \(\mathbf{q}_0^*\) (see (2.6)). Then,

$$\begin{aligned} {{\varvec{\upalpha }}}_{\mathrm{B}\text{- }\mathrm{P}}&= {{\varvec{\upalpha }}}_0 -N^{-1}\left( {\frac{\partial ^{2}l_{\mathrm{ML}} }{\partial {{\varvec{\upalpha }}}_0 {\partial {{\varvec{\upalpha }}}_0}^{\prime }}} \right) ^{-1}\mathbf{q}_{\mathrm{B}\text{- }\mathrm{P}0}^*+O(N^{-2})\nonumber \\&= {{\varvec{\upalpha }}}_0 - N^{-1}{{\varvec{\Lambda }}}^{-1}{{\varvec{\Lambda }} {\varvec{\upbeta }}}_{\mathrm{ML}1} +O(N^{-2})={{\varvec{\upalpha }}}_0 -N^{-1} {{\varvec{\upbeta }}}_{\mathrm{ML}1} +O(N^{-2}).\nonumber \\ \end{aligned}$$
(8.14)

Similarly, define \(\eta _{\mathrm{B}\text{- }\mathrm{P}\, 0}\) as a special case of \(\eta _{0}\) in (3.7):

$$\begin{aligned} \eta _{\mathrm{B}\text{- }\mathrm{P}\, 0} = -({{\varvec{\Lambda }}}^{-1}\mathbf{q}_{\mathrm{B}\text{- }\mathrm{P}\, 0}^*)_{(\alpha )} =-({{\varvec{\upbeta }}}_{\mathrm{ML}1} )_{(\alpha )} =-\beta _{\mathrm{ML}1}. \end{aligned}$$
(8.15)

Then, as before,

$$\begin{aligned} w_{\mathrm{B}\text{- }\mathrm{P}}^*&= N^{1/2}({\hat{\alpha }}_{\mathrm{B}\text{- }\mathrm{P}} -\alpha _0)=-N^{-1/2}\beta _{\mathrm{ML}1} +{{\varvec{\uplambda }}}^{(1)} {}^{\prime }\mathbf{m}^{(1)}+N^{-1/2}{{\varvec{\uplambda }}}^{(2)} {}^{\prime }\mathbf{m}^{(2)} \nonumber \\&+N^{-1}{{\varvec{\uplambda }}}_{\mathrm{B}\text{- }\mathrm{P}}^{(3)} {}^{\prime }\mathbf{m}^{(3)}+O_p (N^{-3/2}), \end{aligned}$$
(8.16)

where \({{\varvec{\uplambda }}}_{\mathrm{B}\text{- }\mathrm{P}}^{(3)} =\left[ {\left\{ {\frac{1}{6}\left( {\frac{\partial }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}} \right) ^{\langle 3 \rangle }\alpha _0 } \right\} , \frac{\partial \alpha _{\Delta \mathrm{B}\text{- }\mathrm{P}} }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}} \right] ^{{\prime }}\) with \(\frac{\partial \alpha _{\Delta \mathrm{B}\text{- }\mathrm{P}} }{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}\) being defined below.

Note that for the Bayes estimator \({\hat{\alpha }}_{\mathrm{W}}, \mathbf{q}^{*}=\mathbf{q}^{*}({\varvec{\upalpha }})\) is a function of \({\varvec{\upalpha }}\), while for \({\hat{\alpha }}_{\mathrm{B}\text{- }\mathrm{P}},\, \mathbf{q}_{\mathrm{B}\text{- }\mathrm{P}}^*=\mathbf{q}^{*}({\varvec{\upalpha }},\mathbf{p})\) is a function of p as well as \({\varvec{\upalpha }}\). Then,

$$\begin{aligned} \frac{\partial {{\varvec{\upalpha }}}_{\mathrm{B}\text{- }\mathrm{P}} }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}&= -\left( {\frac{\partial ^{2}l_{\mathrm{B}\text{- }\mathrm{P}} }{\partial {{\varvec{\upalpha }}}_{\mathrm{B}\text{- }\mathrm{P}}\partial {{\varvec{\upalpha }}}_{\mathrm{B}\text{- }\mathrm{P}} {\prime }}} \right) ^{-1}\frac{\partial ^{2}l_{\mathrm{B}\text{- }\mathrm{P}} }{\partial {{\varvec{\upalpha }}}_{\mathrm{B}\text{- }\mathrm{P}} {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }} \nonumber \\&= -\left( {\frac{\partial ^{2}l_{\mathrm{ML}} }{\partial {{\varvec{\upalpha }}}_{\mathrm{B}\text{- }\mathrm{P}} {\partial {{\varvec{\upalpha }}}_{\mathrm{B}\text{- }\mathrm{P}}}^{\prime }}+N^{-1}\frac{\partial \mathbf{q}_{\mathrm{B}\text{- }\mathrm{P}}^*}{{\partial {{\varvec{\upalpha }}}_{\mathrm{B}\text{- }\mathrm{P}}}^{\prime }}} \right) ^{-1}\left( {\frac{\partial ^{2}l_{\mathrm{ML}}}{\partial {{\varvec{\upalpha }}}_{\mathrm{B}\text{- }\mathrm{P}} {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}+N^{-1}\frac{\partial \mathbf{q}_{\mathrm{B}\text{- }\mathrm{P}}^*}{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}} \right) ,\nonumber \\ \end{aligned}$$
(8.17)

where the term \(N^{-1}\partial \mathbf{q}_{\mathrm{B}\text{- }\mathrm{P}}^*/{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }\) has been added (see (3.2)). In (8.17),

$$\begin{aligned} \frac{\partial ^{2}l_{\mathrm{ML}}}{\partial {{\varvec{\upalpha }}}_{\mathrm{B}\text{- }\mathrm{P}} {\partial {{\varvec{\upalpha }}}_{\mathrm{B}\text{- }\mathrm{P}}}^{\prime }}\!&= \!\frac{\partial ^{2}l_{\mathrm{ML}} }{\partial {{\varvec{\upalpha }}}_0 {\partial {{\varvec{\upalpha }}}_0}^{\prime }}\!+\!\sum _{i=1}^q {\frac{\partial ^{3}l_{\mathrm{ML}} }{\partial {{\varvec{\upalpha }}}_0 {\partial {{\varvec{\upalpha }}}_0}^{\prime }\partial \alpha _{0i} }} (\alpha _{\mathrm{B}\text{- }\mathrm{P} i} \!-\!\alpha _{0i} )\!+\!O(N^{-2}) \nonumber \\ \!&= \!\frac{\partial ^{2}l_{\mathrm{ML}} }{\partial {{\varvec{\upalpha }}}_0 {\partial {{\varvec{\upalpha }}}_0}^{\prime }}\!-\!N^{-1}\sum _{i=1}^q {\frac{\partial ^{3}l_{\mathrm{ML}} }{\partial {{\varvec{\upalpha }}}_0 {\partial {{\varvec{\upalpha }}}_0}^{\prime }\partial \alpha _{0i} }} \left\{ {\left( {\frac{\partial ^{2}l_{\mathrm{ML}} }{\partial {{\varvec{\upalpha }}}_0 {\partial {{\varvec{\upalpha }}}_0}^{\prime }}} \right) ^{-1}\mathbf{q}_{\mathrm{B}\text{- }\mathrm{P}\, 0}^*} \right\} _i\!+\!O(N^{-2}) \nonumber \\ \!&= \!\frac{\partial ^{2}l_{\mathrm{ML}} }{\partial {{\varvec{\upalpha }}}_0 {\partial {{\varvec{\upalpha }}}_0}^{\prime }}\!-\!N^{-1}\sum _{i=1}^q {\frac{\partial ^{3}l_{\mathrm{ML}} }{\partial {{\varvec{\upalpha }}}_0 {\partial {{\varvec{\upalpha }}}_0}^{\prime }\partial \alpha _{0i} }} ({{\varvec{\upbeta }}}_{\mathrm{ML}1} )_i \!+\! O(N^{-2}), \nonumber \\ \frac{\partial \mathbf{q}_{\mathrm{B}\text{- }\mathrm{P}}^*}{{\partial {{\varvec{\upalpha }}}_{\mathrm{B}\text{- }\mathrm{P}}}^{\prime }}\!&= \!\frac{\partial \mathbf{q}_{\mathrm{B}\text{- }\mathrm{P}}^*}{{\partial {{\varvec{\upalpha }}}_0}^{\prime }}\!+\!O(N^{-1})\nonumber \\ \frac{\partial ^{2}l_{\mathrm{ML}} }{\partial {{\varvec{\upalpha }}}_{\mathrm{B}\text{- }\mathrm{P}} {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}\!&= \!\frac{\partial ^{2}l_{\mathrm{ML}} }{\partial {{\varvec{\upalpha }}}_0 {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}+N^{-1}\sum _{i=1}^q {\frac{\partial ^{3}l_{\mathrm{ML}} }{\partial {{\varvec{\upalpha }}}_0 {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }\partial \alpha _{0i} }} (\alpha _{\mathrm{B}\text{- }\mathrm{P} i} \!-\!\alpha _{0i} )\!+\!O(N^{-2}) \nonumber \\ \!&= \!\frac{\partial ^{2}l_{\mathrm{ML}} }{\partial {{\varvec{\upalpha }}}_0 {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}\!-\!N^{-1}\sum _{i=1}^q {\frac{\partial ^{3}l_{\mathrm{ML}} }{\partial {{\varvec{\upalpha }}}_0 {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }\partial \alpha _{0i} }} ({{\varvec{\upbeta }}}_{\mathrm{ML}1} )_i \!+\!O(N^{-2}). \end{aligned}$$
(8.18)

From the above results, we have

$$\begin{aligned} \frac{\partial {{\varvec{\upalpha }}}_{\mathrm{B}\text{- }\mathrm{P}} }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}\!&= \!-{{\varvec{\Lambda }}}^{-1}\frac{\partial ^{2}l_{\mathrm{ML}} }{\partial {{\varvec{\upalpha }}}_0 {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}\!+\!N^{-1}\left[ {{{\varvec{\Lambda }}}^{-1}\left\{ {\!-\!\sum _{i=1}^q {\frac{\partial ^{3}l_{\mathrm{ML}} }{\partial {{\varvec{\upalpha }}}_0 {\partial {{\varvec{\upalpha }}}_0}^{\prime }\partial \alpha _{0i} }} ({{\varvec{\upbeta }}}_{\mathrm{ML}1} )_i \!+\!\frac{\partial \mathbf{q}_{\mathrm{B}\text{- }\mathrm{P}}^*}{{\partial {{\varvec{\upalpha }}}_0}^{\prime }}} \right\} } \right. \nonumber \\&\left. \!\times {{\varvec{\Lambda }}}^{-1}\frac{\partial ^{2}l_{\mathrm{ML}} }{\partial {{\varvec{\upalpha }}}_0 {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}\!+\!{{\varvec{\Lambda }}}^{-1} {\left\{ {\sum _{i=1}^q {\frac{\partial ^{3}l_{\mathrm{ML}}}{\partial {{\varvec{\upalpha }}}_0 {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }\partial \alpha _{0i} }} ({{\varvec{\upbeta }}}_{\mathrm{ML}1})_i \!-\!\frac{\partial \mathbf{q}_{\mathrm{B}\text{- }\mathrm{P}}^*}{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}} \right\} }\right] \nonumber \\&\!+O(N^{-2}) \equiv \frac{\partial {{\varvec{\upalpha }}}_0 }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}\!+\!N^{-1}\frac{\partial {{\varvec{\upalpha }}}_{\Delta \mathrm{B}\text{- }\mathrm{P}} }{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}+O(N^{-2}), \end{aligned}$$
(8.19)
$$\begin{aligned} \left( {\frac{\partial \mathbf{q}_{\mathrm{B}\text{- }\mathrm{P}}^*}{{\partial {{\varvec{\upalpha }}}_0}^{\prime }}} \right) _{ij}&= \frac{\partial ^{3}l_{\mathrm{ML}} }{\partial \alpha _{0i} {\partial {{\varvec{\upalpha }}}_0}^{\prime }\partial \alpha _{0j}}{{\varvec{\upbeta }}}_{\mathrm{ML}1}, \nonumber \\ \left( {\frac{\partial \mathbf{q}_{\mathrm{B}\text{- }\mathrm{P}}^*}{{\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}} \right) _{ik}&= \frac{\partial ^{2}l_{\mathrm{ML}} }{\partial \alpha _{0i} {\partial {{\varvec{\upalpha }}}_0}^{\prime }}\frac{\partial {\hat{{\varvec{\upbeta }}}}_{\mathrm{ML}1} }{\partial p_k }|_{\mathbf{p}={{\varvec{\uppi }}}_{\mathrm{T}} } +\frac{\partial ^{3}l_{\mathrm{ML}}}{\partial \alpha _{0i} {\partial {{\varvec{\upalpha }}}_0}^{\prime }\partial \pi _{\mathrm{T}k} }{{\varvec{\upbeta }}}_{\mathrm{ML}1} \nonumber \\&= \frac{1}{2}\sum _{j^{*}=1}^q {\frac{\partial ^{3}l_{\mathrm{ML}} }{\partial \alpha _{0i} \partial \alpha _{0j^{*}} }} \text{ tr }\left( {\frac{\partial ^{3}\alpha _{0j^{*}} }{\partial {{\varvec{\uppi }}}_{\mathrm{T}} {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }\partial \pi _{\mathrm{T}k} }{{\varvec{\Omega }}}_{\mathrm{T}} +\frac{\partial ^{2}\alpha _{0j^{*}} }{\partial {{\varvec{\uppi }}}_{\mathrm{T}} {\partial {{\varvec{\uppi }}}_{\mathrm{T}}}^{\prime }}\frac{\partial {{\varvec{\Omega }}}_{\mathrm{T}} }{\partial \pi _{\mathrm{T}k} }} \right) \nonumber \\&+\frac{\partial ^{3}l_{\mathrm{ML}} }{\partial \alpha _{0i} {\partial {{\varvec{\upalpha }}}_0}^{\prime }\partial \pi _{\mathrm{T}k} }{{\varvec{\upbeta }}}_{\mathrm{ML}1} (i,j=1,\ldots ,q; k=1,\ldots ,K). \end{aligned}$$
(8.20)

(8.16) with (8.20) gives (8.13). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogasawara, H. Asymptotic properties of the Bayes modal estimators of item parameters in item response theory. Comput Stat 28, 2559–2583 (2013). https://doi.org/10.1007/s00180-013-0418-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-013-0418-5

Keywords

Navigation