Skip to main content
Log in

Heteroscedastic replicated measurement error models under asymmetric heavy-tailed distributions

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

We propose a heteroscedastic replicated measurement error model based on the class of scale mixtures of skew-normal distributions, which allows the variances of measurement errors to vary across subjects. We develop EM algorithms to calculate maximum likelihood estimates for the model with or without equation error. An empirical Bayes approach is applied to estimate the true covariate and predict the response. Simulation studies show that the proposed models can provide reliable results and the inference is not unduly affected by outliers and distribution misspecification. The method has also been used to analyze a real data of plant root decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  MathSciNet  MATH  Google Scholar 

  • Alejandro J, Fernando Q, Ernesto SM (2008) Linear mixed models with skew-elliptical distributions: a Bayesian approach. Comput Stat Data Anal 52(11):5033–5045

    Article  MathSciNet  MATH  Google Scholar 

  • Andrews DF, Mallows CL (1974) Scale mixtures of normal distributions. J R Stat Soc B 36(1):99–102

    MathSciNet  MATH  Google Scholar 

  • Azzalini A, Capitanio A (1999) Statistical applications of the multivariate skew-normal distribution. J R Stat Soc B 61(3):579–602

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen OE (1997) Normal inverse Gaussian distributions and stochastic volatility modelling. Scand J Stat 24(1):1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Basso RM, Lachos VH, Cabral CR, Ghosh P (2010) Robust mixture modeling based on scale mixtures of skew-normal distributions. Comput Stat Data Anal 54(12):2926–2941

    Article  MathSciNet  MATH  Google Scholar 

  • Branco MD, Dey DK (2001) A general class of multivariate skew-elliptical distributions. J Multivar Anal 79(1):99–113

    Article  MathSciNet  MATH  Google Scholar 

  • Cancho VG, Lachos HL, Ortega EMM (2010) A nonlinear regression model with skew-normal errors. Stat Pap 51(3):547–558

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM (2006) Measurement error in nonlinear models: a modern perspective, 2nd edn. Chapman and Hall, Boca Raton

    Book  MATH  Google Scholar 

  • Cao CZ, Lin JG, Shi JQ (2014) Diagnostics on nonlinear model with scale mixtures of skew-normal and first-order autoregressive errors. Statistics 48(5):1033–1047

    Article  MathSciNet  MATH  Google Scholar 

  • Cao CZ, Lin JG, Shi JQ, Wang W, Zhang XY (2015) Multivariate measurement error models for replicated data under heavy-tailed distributions. J Chemom 29(8):457–466

    Article  Google Scholar 

  • Cao CZ, Lin JG, Zhu XX (2012) On estimation of a heteroscedastic measurement error model under heavy-tailed distributions. Comput Stat Data Anal 56(2):438–448

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng CL, Riu J (2006) On Estimating linear relationships when both variables are subject to heteroscedastic measurement errors. Technometrics 48(4):511–519

    Article  MathSciNet  Google Scholar 

  • Cheng CL, Van Ness JW (1999) Statistical regression with measurement error. Arnold, London

    MATH  Google Scholar 

  • Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  • de Castro M, Galea M, Bolfarine H (2008) Hypothesis testing in an errors-in-variables model with heteroscedastic measurement errors. Stat Med 27(25):5217–5234

    Article  MathSciNet  Google Scholar 

  • de Castro M, Galea M (2010) Robust inference in an heteroscedastic measurement error model. J Korean Stat Soc 39(4):439–447

    Article  MathSciNet  MATH  Google Scholar 

  • Fang KT, Kotz S, Ng KW (1990) Symmetrical multivariate and related distributions. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Fuller WA (1987) Measurement error models. Wiley, New York

    Book  MATH  Google Scholar 

  • Garay AM, Lachos VH, Abanto-Valle CA (2011) Nonlinear regression models based on scale mixtures of skew-normal distributions. J Korean Stat Soc 40(1):115–124

    Article  MathSciNet  MATH  Google Scholar 

  • Genton MG (2004) Skew-elliptical distributions and their applications: a journey beyond normality. Chapman and Hall, Boca Raton

    Book  MATH  Google Scholar 

  • Goebel M, Hobbie SE, Bulaj B, Zadworny M, Archibald DD, Oleksyn J, Reich PB, Eissenstat DM (2011) Decomposition of the finest root branching orders: linking belowground dynamics to fine root function and structure. Ecol Monogr 81(1):89–102

    Article  Google Scholar 

  • Guo DL, Mitchell RJ, Hendricks JJ (2004) Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia 140(3):450–457

    Article  Google Scholar 

  • Kelly BC, Brandon C (2007) Some aspects of measurement error in linear regression of astronomical data. Astrophys J 665(2):1489–1506

    Article  Google Scholar 

  • Kulathinal SB, Kuulasmaa K, Gasbarra D (2002) Estimation of an errors-in-variables regression model when the variances of the measurement errors vary between the observations. Stat Med 21(8):1089–1101

    Article  Google Scholar 

  • Lachos VH, Angolini T, Abanto-Valle CA (2011) On estimation and local influence analysis for measurement errors models under heavy-tailed distributions. Stat Pap 52(3):567–590

    Article  MathSciNet  MATH  Google Scholar 

  • Lachos VH, Ghosh PG, Arellano-Valle RB (2010a) Likelihood based inference for skew-normal independent linear mixed models. Stat Sin 20(1):303–322

    MathSciNet  MATH  Google Scholar 

  • Lachos VH, Labra FV, Bolfarine H, Ghosh P (2010b) Multivariate measurement error models based on scale mixtures of the skew-normal distribution. Statistics 44:541–556

    Article  MathSciNet  MATH  Google Scholar 

  • Lange KL, Sinsheimer JS (1993) Normal/independent distributions and their applications in robust regression. J Comput Gr Stat 2(2):175–198

    MathSciNet  Google Scholar 

  • Lin JG, Cao CZ (2013) On estimation of measurement error models with replication under heavy-tailed distributions. Comput Stat 28(2):809–829

    Article  MathSciNet  MATH  Google Scholar 

  • Liu CH, Rubin DB (1994) The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence. Biometrika 81(4):633–648

    Article  MathSciNet  MATH  Google Scholar 

  • McAssey MP, Hsieh F (2010) Slope estimation in structural line-segment heteroscedastic measurement error models. Stat Med 29(25):2631–2642

    Article  MathSciNet  Google Scholar 

  • McLachlan GL, Krishnan T (1997) The EM algorithm and extensions. Wiley, New York

    MATH  Google Scholar 

  • Montenegro LC, Bolfarine H, Lachos VH (2010) Inference for a skew extension of the Grubbs model. Stat Pap 51:701–715

    Article  MathSciNet  MATH  Google Scholar 

  • Osorio F, Paula GA, Galea M (2009) On estimation and influence diagnostics for the Grubbs model under heavy-tailed distributions. Comput Stat Data Anal 53(4):1249–1263

    Article  MathSciNet  MATH  Google Scholar 

  • Patriota AG, Bolfarine H, de Castro M (2009) A heteroscedastic structural errors-in-variables model with equation error. Stat Methodol 6(4):408–423

    Article  MathSciNet  MATH  Google Scholar 

  • Raich JW, Russell AE, Valverde-Barrantes O (2009) Fine root decay rates vary widely among lowland tropical tree species. Oecologia 161(2):325–330

    Article  Google Scholar 

  • Reiersol O (1950) Identifiability of a linear relation between variables which are subject to errors. Econometrica 18(4):375–389

    Article  MathSciNet  MATH  Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129(3):407–419

    Article  Google Scholar 

  • Veenendaal EM, Mantlana KB, Pammenter NW, Weber P, Huntsman-Mapila P, Lloyd J (2008) Growth form and seasonal variation in leaf gas exchange of Colophospermum Mopane savanna trees in northwest Botswana. Tree Physiol 28(3):417–424

    Article  Google Scholar 

  • Zhang XY, Wang W (2015) The decomposition of fine and coarse roots: their global patterns and controlling factors. Sci Rep 5:9940

    Article  Google Scholar 

  • Zeller CB, Carvalho RR, Lachos VH (2012) On diagnostics in multivariate measurement error models under asymmetric heavy-tailed distributions. Stat Pap 53(3):665–683

    Article  MathSciNet  MATH  Google Scholar 

  • Zeller CB, Lachos HL, Vilca-Labra FE (2014) Influence diagnostics for Grubbs’s model with asymmetric heavy-tailed distributions. Stat Pap 55(3):671–690

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation of China (Grant No. 11301278), the MOE (Ministry of Education in China) Project of Humanities and Social Sciences (Grant No. 13YJC910001), and Academic Degree Postgraduate innovation projects of Jiangsu province Ordinary University (Grant No. KYLX15-0883). We are grateful to the associate editor and the referees for their helpful and constructive comments. We would also like to thank Dr. Zhang for providing us the root decomposition data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunzheng Cao.

Appendix

Appendix

1.1 Appendix A: Some heavy-tailed SMSN distributions

The pdf and the conditional moments of some heavy-tailed SMSN distributions are listed here:

1. The multivariate skew-t distribution \(\text {ST}_m(\varvec{\mu }, \varvec{\Sigma }, \varvec{\lambda };\nu )\):

\(\kappa (u)=1/u\), \(U\sim \text {Gamma}(\nu /2,\nu /2)\) with \(\nu > 0\). The pdf of \(\varvec{Y}\) is given by

$$\begin{aligned} p(\varvec{y})=2t_m(\varvec{y}|\varvec{\mu },\varvec{\Sigma };\nu )T\bigg (\sqrt{\frac{m+\nu }{d+\nu }}A;\nu +m\bigg ), \end{aligned}$$

where \(d=(\varvec{y}-\varvec{\mu })^{\top }\varvec{\Sigma }^{-1}(\varvec{y}-\varvec{\mu })\), \(t_m(\cdot |\varvec{\mu }, \varvec{\Sigma };\nu )\) and \(T(\cdot ;\nu )\) denotes the pdf of m-variate Student-t distribution and the cdf of standard univariate t distribution, respectively. When \(\nu \rightarrow +\infty \), one obtains the SN distribution.

The conditional moments are given by

$$\begin{aligned}&u_r=\frac{p_0(\varvec{y})}{p(\varvec{y})}\frac{2^{r+1}\Gamma ((\nu +m+2r)/2)(\nu +d)^{-r}}{\Gamma ((\nu +m)/2)}T\bigg (\sqrt{\frac{m+\nu +2r}{d+\nu }}A;\nu +m+2r\bigg ),\\&\eta _r=\frac{p_0(\varvec{y})}{p(\varvec{y})}\frac{2^{(r+1)/2}\Gamma ((\nu +m+r)/2)}{\pi ^{1/2}\Gamma ((\nu +m)/2)}\frac{(\nu +d)^{(\nu +m)/2}}{(\nu +d+A^2)^{(\nu +m+r)/2}}. \end{aligned}$$

where , i.e. the pdf of the class of SMN distribution when \(\varvec{\lambda }=\varvec{0}\).

2. The multivariate skew-slash distribution \(\text {SS}_m(\varvec{\mu }, \varvec{\Sigma }, \varvec{\lambda };\nu )\):

\(\kappa (u)=1/u\), \(U\sim \text {Beta}(\nu , 1)\) with \(0<u<1\) and \(\nu > 0\). The pdf of \(\varvec{Y}\) is given by

$$\begin{aligned} p(\varvec{y})=2\nu \int \nolimits _0^{1}u^{\nu -1}\varphi _m(\varvec{y}|\varvec{\mu },u^{-1}\varvec{\Sigma })\Phi (u^{1/2}A)\text {d}u. \end{aligned}$$

When \(\nu \rightarrow +\infty \), it reduces to the SN one. The conditional moments are

$$\begin{aligned} u_r&=\frac{p_0(\varvec{y})}{p(\varvec{y})}\frac{2\Gamma ((2\nu +m+2r)/2)}{\Gamma ((2\nu +m)/2)}\Big (\frac{2}{d}\Big )^{r}\frac{P_1((2\nu +m+2r)/2,d/2)}{P_1((2\nu +m)/2,d/2)}\text {E}[\Phi (S^{1/2}A)],\\ \eta _r&=\frac{p_0(\varvec{y})}{p(\varvec{y})}\frac{2^{{(r+1)}/2}\Gamma ((2\nu +m+r)/2)}{\pi ^{1/2}\Gamma ((2\nu +m)/2)}\frac{d^{(2\nu +m)/2}}{(d+A^2)^{(2\nu +m+r)/2}}\\&\quad \ \times \frac{P_1((2\nu +m+r)/2,(d+A^2)/2)}{P_1((2\nu +m)/2,d/2)}, \end{aligned}$$

where \(S\sim \text {Gamma}((2\nu +m+2r)/2,d/2)\text {I}_{(0,1)}\) and \(P_x(a,b)\) denotes the cdf of the \(\text {Gamma}(a,b)\) distribution evaluated at x.

3. The multivariate skew-contaminated normal distribution \(\text {SCN}_m(\varvec{\mu }, \varvec{\Sigma }, \varvec{\lambda };\nu ,\gamma )\):

When \(\kappa (u)=1/u\) and U follows a discrete random probability function \(h(u;\nu ,\gamma )=\nu \text {I}_{(u=\gamma )}+(1-\nu ) \text {I}_{(u=1)}\) with parameter \(0<\nu<1, 0<\gamma \leqslant 1\), one get the multivariate skew-contaminated normal distribution with the pdf as

$$\begin{aligned} p(\varvec{y})=2\{\nu \varphi _m(\varvec{y}|\varvec{\mu },\gamma ^{-1}\varvec{\Sigma })\Phi (\gamma ^{1/2}A)+(1-\nu )\varphi _m(\varvec{y}|\varvec{\mu },\varvec{\Sigma })\Phi (A)\}. \end{aligned}$$

It reduces to the SN distribution when \(\gamma =1\). In this case, we have

$$\begin{aligned}&u_r=\frac{2}{p(\varvec{y})}\{\nu \gamma ^{r}\varphi _m(\varvec{y}|\varvec{\mu },\gamma ^{-1}\varvec{\Sigma })\Phi (\gamma ^{1/2}A)+(1-\nu )\varphi _m(\varvec{y}|\varvec{\mu },\varvec{\Sigma })\Phi (A)\},\\&\eta _r=\frac{2}{p(\varvec{y})}\{\nu \gamma ^{r/2}\varphi _m(\varvec{y}|\varvec{\mu },\gamma ^{-1}\varvec{\Sigma })\phi (\gamma ^{1/2}A)+(1-\nu )\varphi _m(\varvec{y}|\varvec{\mu },\varvec{\Sigma })\phi (A)\}. \end{aligned}$$

1.2 Appendix B: EM algorithm for SMSN-HRME model without equation error

Denoting the complete data set of model (4) without equation error by \(\varvec{Z}_c=\{\varvec{Z}_{ct}=(\varvec{Z}_t^{\top }, x_t, u_t, v_t)^{\top }|t=1,\ldots ,n\}\), an equivalent form of structure (5) is given by

$$\begin{aligned} \begin{array}{c} \varvec{Z}_t|x_t,U_t=u_t\mathop {\sim }\limits ^{ind}\text {N}_{m_t}(\varvec{a}_t+x_t\varvec{b}_t, \kappa (u_t)\mathbf D (\varvec{\phi }_{t})),\\ x_t|U_t=u_t,V_t=v_t\mathop {\sim }\limits ^{ind}\text {N}(\mu _x+\tau _x v_t, \kappa (u_t)\gamma _x),\\ V_t|U_t=u_t\mathop {\sim }\limits ^{ind}\text {HN}(0,\kappa (u_t)),\\ U_t\mathop {\sim }\limits ^{ind}\text {H}(u_t; \varvec{\nu }),\ t=1,\ldots , n, \end{array} \end{aligned}$$
(11)

The complete log-likelihood function based on \(\varvec{Z}_c\) omitting items unrelated with \(\varvec{\theta }\) can be written as

$$\begin{aligned} l(\varvec{\theta }\big |\varvec{Z}_c)=\sum _{t=1}^n {\big (l_{x_t|v_t,u_t}+l_{\varvec{Z}_t|x_t,u_t}\big )}, \end{aligned}$$

where,

$$\begin{aligned}&l_{x_t|v_t,u_t}=-\frac{1}{2}\log (\gamma _x)-\frac{1}{2}\gamma _x^{-1}\kappa ^{-1}(u_t)\big (x_t-\mu _x-\tau _x v_t\big )^2,\\&l_{\varvec{Z}_t|x_t,u_t} =-\frac{1}{2}\kappa ^{-1}(u_t){(\varvec{Z}_t-\varvec{a}_t-\varvec{b}_tx_t)}^{\top }\mathbf D ^{-1}(\varvec{\phi }_{t}){(\varvec{Z}_t-\varvec{a}_t-\varvec{b}_tx_t)}. \end{aligned}$$

The EM algorithm is listed as follows.

E-step: Let \(\varvec{\theta }^{(k)}\) be the estimates of \(\varvec{\theta }\) at the k-th iteration. By calculating the conditional expectation \(\text {E}\big [l(\varvec{\theta }|\varvec{Z}_c)\big |\widehat{\varvec{\theta }}^{(k)}, \varvec{Z}\big ]\), we get the Q-function

$$\begin{aligned} Q(\varvec{\theta }|\widehat{\varvec{\theta }}^{(k)})=\sum _{t=1}^n\big [Q_{1t}(\varvec{\theta }|\widehat{\varvec{\theta }}^{(k)})+Q_{2t}(\varvec{\theta }|\widehat{\varvec{\theta }}^{(k)})\big ], \end{aligned}$$

with

$$\begin{aligned} \begin{aligned} Q_{1t}(\varvec{\theta }|\widehat{\varvec{\theta }}^{(k)})&=-\frac{1}{2}\log (\gamma _x)-\frac{1}{2}\gamma _x^{-1}\big (\widehat{ux^2}_t^{(k)}+\mu _x^2\widehat{u}_t^{(k)}+\tau _x^2\widehat{uv^2}_t^{(k)}\\&\quad -\,2\mu _x\widehat{ux}_t^{(k)}-2\tau _x\widehat{uxv}_t^{(k)}+2\mu _x\tau _x\widehat{uv}_t^{(k)}\big ), \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} Q_{2t}(\varvec{\theta }|\widehat{\varvec{\theta }}^{(k)})&=-\,\frac{1}{2}\big [\widehat{u}_t^{(k)}(\varvec{Z}_t-\varvec{a}_t)^{\top }\mathbf D ^{-1}(\varvec{\phi }_{t})(\varvec{Z}_t-\varvec{a}_t)\\&\quad -\,2\widehat{ux}_t^{(k)}(\varvec{Z}_t-\varvec{a}_t)^{\top }\mathbf D ^{-1}(\varvec{\phi }_{t})\varvec{b}_t +\widehat{ux^2}_t^{(k)}\varvec{b}_t^{\top }\mathbf D ^{-1}(\varvec{\phi }_{t})\varvec{b}_t\big ], \end{aligned} \end{aligned}$$

where \(\widehat{ux}_t^{(k)}=\text {E}[\kappa ^{-1}(U_t)x_t|\widehat{\varvec{\theta }}^{(k)},\varvec{Z}_t]\), \(\widehat{ux^2}_t^{(k)}=\text {E}[\kappa ^{-1}(U_t)x_t^2|\widehat{\varvec{\theta }}^{(k)},\varvec{Z}_t]\), \(\widehat{uxv}_t^{(k)}=\text {E}[\kappa ^{-1}(U_t)x_t V_t|\widehat{\varvec{\theta }}^{(k)},\varvec{Z}_t]\), and their computational expressions are as follows

$$\begin{aligned} \widehat{ux}_t^{(k)}&=\widehat{u}_t^{(k)}\widehat{r}_t^{(k)}+\widehat{uv}_t^{(k)}\widehat{s}_t^{(k)},\\ \widehat{ux^2}_t^{(k)}&=\widehat{u}_t^{(k)}{\widehat{r}_t}^{2(k)}+2\widehat{uv}_t^{(k)}\widehat{r}_t^{(k)}\widehat{s}_t^{(k)} +\widehat{uv^2}_t^{(k)}{\widehat{s}}_t^{2(k)}+\widehat{\gamma }_x^{(k)}/\widehat{c}_{1t}^{(k)},\\ \widehat{uxv}_t^{(k)}&=\widehat{uv}_t^{(k)}\widehat{r}_t^{(k)}+\widehat{uv^2}_t^{(k)}\widehat{s}_t^{(k)}, \end{aligned}$$

with \(\widehat{r}_t=\widehat{\mu }_x+\widehat{\gamma }_x\widehat{a}_t/\widehat{c}_{1t}\), \(\widehat{s}_t=\widehat{\tau }_x/\widehat{c}_{1t}\). Here \(a_t=(\varvec{Z}_t-\varvec{\mu }_t)^{\top }\mathbf D ^{-1}(\varvec{\phi }_{t})\varvec{b}_t\), \(c_t=1+\phi _x\varvec{b}_t^{\top }\mathbf D ^{-1}(\varvec{\phi }_{t})\varvec{b}_t\), \(c_{1t}=1+\gamma _x\varvec{b}_t^{\top }\mathbf D ^{-1}(\varvec{\phi }_{t})\varvec{b}_t\).

M-step: Maximizing \(Q(\varvec{\theta }|\widehat{\varvec{\theta }}^{(k)})\) with respect to \(\varvec{\theta }\), we achieve the updated estimates \(\widehat{\varvec{\theta }}^{(k+1)}\) by the following iterative equations:

$$\begin{aligned} \widehat{\mu }_x^{(k+1)}&=\frac{\sum _{t=1}^n \widehat{ux}_t^{(k)}\sum _{t=1}^n \widehat{uv^2}_t^{(k)}-\sum _{t=1}^n \widehat{uv}_t^{(k)}\sum _{t=1}^n \widehat{uxv}_t^{(k)}}{\sum _{t=1}^n \widehat{u}_t^{(k)}\sum _{t=1}^n \widehat{uv^2}_t^{(k)}-\big (\sum _{t=1}^n \widehat{uv}_t^{(k)}\big )^2},\\ \widehat{\tau }_x^{(k+1)}&=\frac{\sum _{t=1}^n \widehat{u}_t^{(k)}\sum _{t=1}^n \widehat{uxv}_t^{(k)}-\sum _{t=1}^n \widehat{uv}_t^{(k)}\sum _{t=1}^n \widehat{ux}_t^{(k)}}{\sum _{t=1}^n \widehat{u}_t^{(k)}\sum _{t=1}^n \widehat{uv^2}_t^{(k)}-\big (\sum _{t=1}^n \widehat{uv}_t^{(k)}\big )^2},\\ \widehat{\gamma }_x^{(k+1)}&=\frac{1}{n}\sum _{t=1}^n \bigg (\widehat{ux^2}_t^{(k)}+(\widehat{\mu }_x^{(k+1)})^2\widehat{u}_t^{(k)}+(\widehat{\tau }_x^{(k+1)})^2\widehat{uv^2}_t^{(k)}\\&-\,2\widehat{\mu }_x^{(k+1)}\widehat{ux}_t^{(k)}-2\widehat{\tau }_x^{(k+1)}\widehat{uxv}_t^{(k)} +2\widehat{\mu }_x^{(k+1)}\widehat{\tau }_x^{(k+1)}\widehat{uv}_t^{(k)}\bigg ), \end{aligned}$$
$$\begin{aligned} \widehat{\alpha }^{(k+1)}&=\frac{\sum _{t=1}^n \big (\widehat{u}_t^{(k)}\bar{Y}_tq_t/\phi _{\varepsilon _t}\big )\sum _{t=1}^n \big (\widehat{ux^2}_t^{(k)}q_t/\phi _{\varepsilon _t}\big )-\sum _{t=1}^n \big (\widehat{ux}_t^{(k)}q_t/\phi _{\varepsilon _t}\big )\sum _{t=1}^n \big (\widehat{ux}_t^{(k)}\bar{Y}_tq_t/\phi _{\varepsilon _t}\big )}{\sum _{t=1}^n \big (\widehat{u}_t^{(k)}q_t/\phi _{\varepsilon _t}\big )\sum _{t=1}^n \big (\widehat{ux^2}_t^{(k)}q_t/\phi _{\varepsilon _t}\big )-\big (\sum _{t=1}^n \widehat{ux}_t^{(k)}q_t/\phi _{\varepsilon _t}\big )^2},\\ \widehat{\beta }^{(k+1)}&=\frac{\sum _{t=1}^n \big (\widehat{ux}_t^{(k)}\bar{Y}_tq_t/\phi _{\varepsilon _t}\big )\sum _{t=1}^n (\widehat{u}_t^{(k)}q_t/\phi _{\varepsilon _t})-\sum _{t=1}^n \bigg (\widehat{ux}_t^{(k)}q_t/\phi _{\varepsilon _t}\bigg )\sum _{t=1}^n \bigg (\widehat{u}_t^{(k)}\bar{Y}_tq_t/\phi _{\varepsilon _t}\bigg )}{\sum _{t=1}^n \bigg (\widehat{u}_t^{(k)}q_t/\phi _{\varepsilon _t}\bigg )\sum _{t=1}^n \bigg (\widehat{ux^2}_t^{(k)}q_t/\phi _{\varepsilon _t}\bigg )-\bigg (\sum _{t=1}^n \widehat{ux}_t^{(k)}q_t/\phi _{\varepsilon _t}\bigg )^2}, \end{aligned}$$

where \(\bar{X}_t=\frac{1}{p_t}\sum _{i=1}^{p_t} X_t^{(i)}\), \(\bar{Y}_t=\frac{1}{q_t}\sum _{j=1}^{q_t} Y_t^{(j)}\). Note that the estimators \(\widehat{\lambda }_x\) and \(\widehat{\phi }_x\) can be inferred from the one-to-one transformation \(\widehat{\lambda }_x=\widehat{\tau }_x/\sqrt{\widehat{\gamma }_x}\) and \(\widehat{\phi }_x=\widehat{\gamma }_x+\widehat{\tau }_x^2\).

1.3 Appendix C: The related derivatives

By direct calculations, we have the first derivatives of \(d_t\) and \(A_t\) respect to \(\varvec{\theta }\) as follows:

$$\begin{aligned} \frac{\partial d_t}{\partial \theta _i}&=-2{(\varvec{Z}_t-\varvec{\mu }_t)}^{\top }\varvec{\Sigma }_t^{-1}\frac{\partial \varvec{\mu }_t}{\partial \theta _i} -{(\varvec{Z}_t-\varvec{\mu }_t)}^\top \varvec{\Sigma }_t^{-1}\frac{\partial \varvec{\Sigma }_t}{\partial \theta _i}\varvec{\Sigma }_t^{-1}(\varvec{Z}_t-\varvec{\mu }_t),\\ \frac{\partial A_t}{\partial \theta _i}&=\bigg (\frac{\partial \psi _t}{\partial \theta _i}\varvec{b}_t^{\top } +\psi _t\frac{\partial \varvec{b}_t^{\top }}{\partial \theta _i}-\psi _t\varvec{b}_t^{\top }\varvec{\Sigma }_t^{-1} \frac{\partial \varvec{\Sigma }_t}{\partial \theta _i}\bigg )\varvec{\Sigma }_t^{-1}(\varvec{Z}_t-\varvec{\mu }_t) -\psi _t\varvec{b}_t^{\top }\varvec{\Sigma }_t^{-1}\frac{\partial \varvec{\mu }_t}{\partial \theta _i}, \end{aligned}$$

where \(\psi _t=\frac{\lambda _x\phi _x}{\sqrt{\phi _x+\lambda _x^2\Lambda _{xt}}}\).

In addition, we also need to calculate the following derivatives:

$$\begin{aligned} \frac{\partial \varvec{\mu }_t}{\partial \mu _x}&=\varvec{b}_t,\quad \frac{\partial \varvec{\mu }_t}{\partial \alpha }=\varvec{c}_t,\quad \frac{\partial \varvec{\mu }_t}{\partial \beta }=\mu _x\varvec{c}_t,\quad \frac{\partial \varvec{b}_t}{\partial \beta }=\varvec{c}_t,\\ \frac{\partial \varvec{\Sigma }_t}{\partial \beta }&=\phi _x(\varvec{c}_t\varvec{b}_t^{\top }+\varvec{b}_t\varvec{c}_t^{\top }),\quad \frac{\partial \varvec{\Sigma }_t}{\partial \phi _x}=\varvec{b}_t\varvec{b}_t^{\top },\quad \frac{\partial \varvec{\Sigma }_t}{\partial \phi _e}=\varvec{c}_t\varvec{c}_t^{\top },\\ \frac{\partial \psi _t}{\partial \beta }&=q_t\beta c_t^{-2}\psi _t^3/(\phi _{\varepsilon _t}+q_t\phi _e),\quad \frac{\partial \psi _t}{\partial \lambda _x}=\phi _x^2(\phi _x+\lambda _x^2\Lambda _{xt})^{-3/2},\\ \frac{\partial \psi _t}{\partial \phi _x}&=\frac{1}{2}\psi _t\phi _x^{-1}+\frac{1}{2}\psi _t^3\phi _x^{-1}c_t^{-2}\varvec{b}_t^{\top }\varvec{\Sigma }_{1t}^{-1}\varvec{b}_t,\\ \frac{\partial \psi _t}{\partial \phi _e}&=-\frac{1}{2}q_t^2\psi _t^3c_t^{-2}\beta ^2{(\phi _{\varepsilon _t}+q_t\phi _e)}^{-2}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Chen, M., Wang, Y. et al. Heteroscedastic replicated measurement error models under asymmetric heavy-tailed distributions. Comput Stat 33, 319–338 (2018). https://doi.org/10.1007/s00180-017-0720-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-017-0720-8

Keywords

Navigation