Skip to main content
Log in

Bayesian estimation of generalized gamma shared frailty model

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Multivariate survival analysis comprises of event times that are generally grouped together in clusters. Observations in each of these clusters relate to data belonging to the same individual or individuals with a common factor. Frailty models can be used when there is unaccounted association between survival times of a cluster. The frailty variable describes the heterogeneity in the data caused by unknown covariates or randomness in the data. In this article, we use the generalized gamma distribution to describe the frailty variable and discuss the Bayesian method of estimation for the parameters of the model. The baseline hazard function is assumed to follow the two parameter Weibull distribution. Data is simulated from the given model and the Metropolis–Hastings MCMC algorithm is used to obtain parameter estimates. It is shown that increasing the size of the dataset improves estimates. It is also shown that high heterogeneity within clusters does not affect the estimates of treatment effects significantly. The model is also applied to a real life dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aalen O (1992) Modelling heterogeneity in survival analysis by the compound poisson distribution. Ann Appl Probab 2:951–972

    Article  MathSciNet  MATH  Google Scholar 

  • Allenby GM, Rossi PE (1998) Marketing models of consumer heterogeneity. J Econom 89(12):57–78. doi:10.1016/S0304-4076(98)00055-4

    Article  MATH  Google Scholar 

  • Balakrishnan N, Peng Y (2006) Generalized gamma frailty model. Stat Med 25(16):2797–2816. doi:10.1002/sim.2375

    Article  MathSciNet  Google Scholar 

  • Bodnar O, Link A, Arendack B, Possolo A, Elster C (2017) Bayesian estimation in random effects meta-analysis using a non-informative prior. Stat Med 36(2):378–399. doi:10.1002/sim.7156,sim.7156

    Article  MathSciNet  Google Scholar 

  • Callegaro A, Iacobelli I (2012) The cox shared frailty model with log-skew-normal frailties. Stat Model 12(5):399–418

    Article  MathSciNet  Google Scholar 

  • Chib S, Kang KH (2016) Efficient posterior sampling in Gaussian affine term structure models. http://apps.olin.wustl.edu/faculty/chib/chibkang2016.pdf. Accessed 14 Feb 2017

  • Clayton D (1978) A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65(1):141–151. doi:10.1093/biomet/65.1.141

    Article  MathSciNet  MATH  Google Scholar 

  • Clayton DG (1991) A Monte Carlo method for Bayesian inference in frailty models. Biometrics 47(2):467–485. doi:10.2307/2532139

  • Cowles MK, Carlin BP (1996) Markov chain monte carlo convergence diagnostics: a comparative review. J Am Stat Assoc 91(434):883–904

    Article  MathSciNet  MATH  Google Scholar 

  • Cox D (1972) Regression models and life-tables. J Roy Stat Soc Ser B Methodol 34(2):187–220

    MathSciNet  MATH  Google Scholar 

  • Danahy DT, Burwell DT, Aronow WS, Prakash R (1977) Sustained hemodynamic and antianginal effect of high dose oral isosorbide dinitrate. Circulation 55(2):381–387

    Article  Google Scholar 

  • Dellaportas P, Smith AF (1993) Bayesian inference for generalized linear and proportional hazards models via Gibbs sampling. J Roy Stat Soc Ser C (Appl Stat) 42(3): 443–459. doi:10.2307/2986324

  • Ducrocq V, Casella G (1996) A bayesian analysis of mixed survival models. Genet Sel Evol 28(6):505. doi:10.1186/1297-9686-28-6-505

    Article  Google Scholar 

  • Gelman A, Roberts GO, Gilks WR (1996) Efficient metropolis jumping rules. In: Bayesian statistics, vol 5 (Alicante, 1994). Oxford University Press, pp 599–607

  • Gelman A, Carlin J, Stern H, Dunson D, Vehtari A, Rubin D (2013) Bayesian data analysis, 3rd edn. Chapman and Hall, New York

    MATH  Google Scholar 

  • Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. Bayesian Stat 4:169–188

    MathSciNet  Google Scholar 

  • Golightly A, Wilkinson DJ (2008) Bayesian inference for nonlinear multivariate diffusion models observed with error. Comput Stat Data Anal 52(3):1674–1693

    Article  MathSciNet  MATH  Google Scholar 

  • Greenwood M, Yule G (1920) An enquiry into the nature of frequency distributions representative of multiple happenings with particular reference of multiple attacks of disease or of repeated accidents. J Roy Stat Soc 83:255–279

    Article  Google Scholar 

  • Hanagal DD, Dabade AD (2013) Bayesian estimation of parameters and comparison of shared gamma frailty models. Commun Stat Simul Comput 42(4):910–931

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings W (1970) Monte carlo samping methods using markov chains and their applications. Biometrika 57:97–109. doi:10.1093/biomet/57.1.97

    Article  MathSciNet  MATH  Google Scholar 

  • Heidelberger P, Welch PD (1983) Simulation run length control in the presence of an initial transient. Oper Res 31(6):1109–1144

    Article  MATH  Google Scholar 

  • Higgins JPT, Thompson SG, Spiegelhalter DJ (2009) A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc 172(1):137–159. doi:10.1111/j.1467-985X.2008.00552.x

    Article  MathSciNet  Google Scholar 

  • Hougaard P (1986a) A class of multivariate failure time distributions. Biometrika 73:671–678

    MathSciNet  MATH  Google Scholar 

  • Hougaard P (1986b) Survival models for heterogeneous populations derived from stable distributions. Biometrika 73(2):387–396. doi:10.1093/biomet/73.2.387

    Article  MathSciNet  MATH  Google Scholar 

  • Hougaard P (1995) Frailty models for survival data. Lifetime Data Anal 1(3):255–273. doi:10.1007/BF00985760

    Article  MathSciNet  Google Scholar 

  • Hougaard P (2000) Analysis of multivariate survival data. Springer, New York. doi:10.1007/978-1-4612-1304-8

    Book  MATH  Google Scholar 

  • Ibrahim JG, Chen MH, Sinha D (2001) Bayesian survival analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  • Khodabin M, Ahmadabadi A (2010) Some properties of generalized gamma distribution. Math Sci 4(1):9–28

    MathSciNet  MATH  Google Scholar 

  • Khoshravesh M, Sefidkouhi MAG, Valipour M (2015) Estimation of reference evapotranspiration using multivariate fractional polynomial, Bayesian regression, and robust regression models in three arid environments. Appl Water Sci. doi:10.1007/s13201-015-0368-x

  • Kim S, Shephard N, Chib S (1998) Stochastic volatility: likelihood inference and comparison with arch models. Rev Econ Stud 65(3):361–393

    Article  MATH  Google Scholar 

  • Klein JP (1992) Semiparametric estimation of random effects using the cox model based on the EM algorithm. Biometrics 48(3):795–806

    Article  Google Scholar 

  • Kohn R, Smith M, Chan D (2001) Nonparametric regression using linear combinations of basis functions. Stat Comput 11(4):313–322

    Article  MathSciNet  Google Scholar 

  • Koop G, Osiewalski J, Steel MF (1997) Bayesian efficiency analysis through individual effects: hospital cost frontiers. J Econom 76(12):77–105. doi:10.1016/0304-4076(95)01783-6

    Article  MATH  Google Scholar 

  • Lam KF, Kuk AY (1997) A marginal likelihood approach to estimation in frailty models. J Am Stat Assoc 92(439): 985–990

  • McGilchrist CA, Aisbett CW (1991) Regression with frailty in survival analysis. Biometrics 47(2):461–466

    Article  Google Scholar 

  • Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44(247):335–341. doi:10.2307/2280232

    Article  MATH  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  • Oakes D (1994) Use of frailty models for multivariate survival data. In: Proceedings of the XVIIth international biometrics conference, Hamilton, Ontario, Canada, pp 275–286

  • Pengcheng C, Jiajia Z, Riquan Z (2013) Estimation of the accelerated failure time frailty model under generalized gamma frailty. Comput Stat Data Anal 62:171–180

    Article  MathSciNet  MATH  Google Scholar 

  • Pullenayegum EM (2011) An informed reference prior for between-study heterogeneity in meta-analyses of binary outcomes. Stat Med 30(26):3082–3094. doi:10.1002/sim.4326

    Article  MathSciNet  Google Scholar 

  • Ripatti S, Palmgren J (2000) Estimation of multivariate frailty models using penalized partial likelihood. Biometrics 56(4):1016–1022

    Article  MathSciNet  MATH  Google Scholar 

  • Sahu SK, Dey DK, Aslanidou H, Sinha D (1997) A weibull regression model with gamma frailties for multivariate survival data. Lifetime Data Anal 3:123–137

    Article  MATH  Google Scholar 

  • Santos CA, Achcar JA (2010) A Bayesian analysis for multivariate survival data in the presence of covariates. J Stat Theory Appl 9:233–253

    MathSciNet  Google Scholar 

  • Turner RM, Jackson D, Wei Y, Thompson SG, Higgins JPT (2015) Predictive distributions for between-study heterogeneity and simple methods for their application in bayesian meta-analysis. Stat Med 34(6):984–998. doi:10.1002/sim.6381

    Article  MathSciNet  Google Scholar 

  • Vaida F, Xu R (2000) Proportional hazards model with random effects. Stat Med 19:3309–3324

    Article  Google Scholar 

  • Vaupel J, Manton K, Stallard E (1979) The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16(3):439–454. doi:10.2307/2061224

    Article  Google Scholar 

  • Wienke A, Lichtenstein P, Yashin AI (2003) A bivariate frailty model with a cure fraction for modeling familial correlations in diseases. Biometrics 59(4):1178–1183. doi:10.1111/j.0006-341x.2003.00135.x

    Article  MathSciNet  MATH  Google Scholar 

  • Xue X, Brookmeyer R (1996) Bivariate frailty model for the analysis of multivariate survival time. Lifetime Data Anal 2(3):277–289. doi:10.1007/bf00128978

    Article  MATH  Google Scholar 

  • Yashin A, Vaupel J, Iachine I (1995) Correlated individual frailty: an advantageous approach to survival analysis of bivariate data. Math Popul Stud 5(2):145–159. doi:10.1080/08898489509525394

    Article  MATH  Google Scholar 

  • Yau K, McGilchrist C (1997) Use of generalised linear mixed models for the analysis of clustered survival data. Biom J 39:3–11

    Article  MATH  Google Scholar 

  • Zeger SL, Karim MR (1991) Generalized linear models with random effects: a gibbs sampling approach. J Am Stat Assoc 86(413):79–86. doi:10.1080/01621459.1991.10475006

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is grateful to University Grants Commission, Govt. of India for providing financial support for carrying out this work. The authors are also thankful to Department of Science and Technology (DST), Govt. of India for providing support under PURSE grant and are grateful to the referees for their constructive suggestions which have helped immensely in improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanchan Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidhu, S., Jain, K. & Sharma, S.K. Bayesian estimation of generalized gamma shared frailty model. Comput Stat 33, 277–297 (2018). https://doi.org/10.1007/s00180-017-0728-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-017-0728-0

Keywords

Navigation