Skip to main content
Log in

Robust population designs for longitudinal linear regression model with a random intercept

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, optimal population designs for linear regression model with a random intercept for longitudinal data are considered. The design space is assumed to be a set of equally spaced time points. Taking the sampling scheme for each subject as a multidimensional point in the space of admissible sampling sequence, we determine the optimal number and allocation of sampling times in order to estimate the fixed effects model as accurately as possible. To make comparisons between different designs in a meaningful manner, we take experimental costs into account when defining the D-optimal design criterion function. We take a Bayesian method to overcome the uncertainty of the parameters in the design criterion to derive Bayesian optimal population designs. For complicated cases, we propose a hybrid algorithm to find optimal designs. Meanwhile, we apply the Equivalence Theorem to check the global optimality of these designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abebe HT, Tan FES, Breukelen GJPV, Berger MPF (2014a) Bayesian \(D\)-optimal designs for the two parameter logistic mixed effects model. Comput Stat Data Anal 71:1066–1076

    Article  MathSciNet  MATH  Google Scholar 

  • Abebe HT, Tan FES, Breukelen GJPV, Berger MPF (2014b) Robustness of Bayesian \(D\)-optimal design for the logistic mixed model against misspecification of autocorrelation. Wiley Ser Comput Stat 29:1667–1690

    Article  MathSciNet  MATH  Google Scholar 

  • Abt M, Liski EP, Mandal NK, Sinha BK (1997) Optimal designs in growth curve models: part I. Correlated model for linear growth: optimal designs for slope parameter estimation and growth prediction. J Stat Plan Inference 64:141–150

    Article  MATH  Google Scholar 

  • Abt M, Gaffke N, Liski EP, Sinha BK (1998) Optimal designs in growth curve models-II. Correlated model for quadratic growth: optimal designs for parameter estimation and growth prediction. J Stat Plan Inference 67:287–296

    Article  MathSciNet  MATH  Google Scholar 

  • Atkins JE, Cheng CS (1999) Optimal regression designs in the presence of random block effects. J Stat Plan Inference 77:321–335

    Article  MathSciNet  MATH  Google Scholar 

  • Atkinson AC, Donev AN, Tobias RD (2007) Optimum experimental designs, with SAS. Oxford University Press Inc., New York

    MATH  Google Scholar 

  • Berger MPF, Tan FES (2004) Robust designs for linear mixed effects models. J R Stat Soc Ser C 53:569–581

    Article  MathSciNet  MATH  Google Scholar 

  • Chen RB, Chang SP, Wang W, Tung HC, Wong WK (2014a) Minimax optimal designs via particle swarm optimization methods. Stat Comput 25(5):975–988

    Article  MathSciNet  MATH  Google Scholar 

  • Chen RB, Hsu YW, Hung Y, Wang W (2014b) Discrete particle swarm optimization for constructing uniform design on irregular regions. Comput Stat Data Anal 72:282–297

    Article  MathSciNet  Google Scholar 

  • Cheng CS (1995) Optimal regression designs under random block-effects models. Stat Sin 5:485–497

    MathSciNet  MATH  Google Scholar 

  • Chernoff H (1953) Locally optimal designs for estimating parameters. Ann Math Stat 24:586–602

    Article  MathSciNet  MATH  Google Scholar 

  • Debusho LK (2004) Optimal designs for linear mixed models. PhD thesis, South Africa, University of KwaZulu-Natal

  • Debusho LK, Haines LM (2008) \(V\)- and \(D\)-optimal population designs for the simple linear regression model with a random intercept term. J Stat Plan Inference 138:1116–1130

    Article  MathSciNet  MATH  Google Scholar 

  • Debusho LK, Haines LM (2011) \(D\)- and \(V\)-optimal population designs for the quadratic regression model with a radom intercept term. J Stat Plan Inference 141:889–898

    Article  MATH  Google Scholar 

  • Duchateau L, Janssen P, Rowlands GJ (1998) Linear mixed models. An introduction with applications in veterinary research. International Livestock Research Institute, Nairobi

    Google Scholar 

  • Dette H, Pepelyshev A, Holland-letz T (2010) Optimal designs for random effect models with correlated errors with applications in population pharmacokinetics. Ann Appl Stat 3:1430–1450

    Article  MathSciNet  MATH  Google Scholar 

  • Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science(Nagoya, Japan). IEEE Service Center, Piscataway, pp 39–43

  • Fedorov V, Leonov S (2013) Optimal design for nonlinear response models. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Gagnon R, Leonov S (2005) Optimal population designs for PK models with serial sampling. J Biopharm Stat 15:143–163

    Article  MathSciNet  Google Scholar 

  • Gilks WR, Wild P (1992) Adaptive rejection sampling for Gibbs sampling. Appl Stat 41:337–348

    Article  MATH  Google Scholar 

  • Goos P (2002) The optimal design of blocked and split-plot experiments. Springer, NewYork

    Book  MATH  Google Scholar 

  • Gueorguieva I, Aarons L, Ogungbenro K, Jorga KM, Rodgers T, Rowland M (2006) Optimal design for multivariate response pharmacokinetic models. J Pharmacokinet Pharmacodyn 33:97–124

    Article  Google Scholar 

  • Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: IEEE international conference on in systems, man, and cybernetics, vol 5. IEEE, pp 4104–4108

  • Khuri AI (1992) Response surface models with random block effects. Technometrics 34:26–37

    Article  MathSciNet  MATH  Google Scholar 

  • Magnus J, Neudecker H (1999) Matrix differential calculus with applications in statistics and econometrics. Wiley, New York

    MATH  Google Scholar 

  • Mentré F, Mallet A, Baccar D (1997) Optimal design in random-effects regression models. Biometrika 84:429–442

    Article  MathSciNet  MATH  Google Scholar 

  • Niaparast M (2009) On optimal design for a Poisson regression model with random intercept. Stat Probab Lett 79:741–747

    Article  MathSciNet  MATH  Google Scholar 

  • Ouwens MJNM, Tan FES, Berger MPF (2002) Maximin D-optimal designs for longitudinal mixed effects models. Biometrics 58:735–741

    Article  MathSciNet  MATH  Google Scholar 

  • Ouwens MJNM, Tan FES, Berger MPF (2006) A maximin criterion for the logistic random intercept model with covariates. J Stat Plan Inference 136:962–981

    Article  MathSciNet  MATH  Google Scholar 

  • Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization: an overview. Swarm Intell 1:33–57

    Article  Google Scholar 

  • Prus M, Schwabe R (2016) Optimal designs for the prediction of individual parameters in hierarchical models. J R Stat Soc Ser B Stat Methodol 78:175–191

    Article  MathSciNet  Google Scholar 

  • Retout S, Comets E, Smason A, mentré F (2007) Design in nonlinear mixed effects models: optimization using the Fedorov–Wynn algorithm and and power of the Wald test for binary covariates. Stat Med 26:5162–5179

    Article  MathSciNet  Google Scholar 

  • Ryan EG, Drovandi CC, Pettitt AN (2015) Simulation-based fully Bayesian experimental design for mixed effects models. Comput Stat Data Anal 92:26–39

    Article  MathSciNet  Google Scholar 

  • Snijders TAB, Bosker RJ (1999) Multilevel analysis. SAGE, London

    MATH  Google Scholar 

  • Tan FES, Berger MPF (1999) Optimal allocation of time points for the random effects model. Commun Stat Simul Comput 28:517–540

    Article  MathSciNet  MATH  Google Scholar 

  • Tekle FB, Tan FES, Berger MPF (2008) \(D\)-optimal cohort designs for linear mixed-effects models. Stat Med 27:2586–2600

    Article  MathSciNet  Google Scholar 

  • Tommasi C, Rodríguez-Díaz JM, Santos-Martí MT (2014) Integral approximations for computing optimum designs in random-effects logistic regression models. Comput Stat Data Anal 71:1208–1220

    Article  MathSciNet  Google Scholar 

  • Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer, New York

    MATH  Google Scholar 

  • Waite TW, Woods DC (2015) Designs for generalized linear models with random block effects via information matrix approximations. Biometrika 102(3):677–693

    Article  MathSciNet  MATH  Google Scholar 

  • Wong WK, Chen RB, Huang CC, Wang W (2015) A modified particle swarm optimization technique for finding optimal designs for mixture models. PLoS ONE. https://doi.org/10.1371/journal.pone.0124720

Download references

Acknowledgements

This work was partially supported by NSFC Grant (11301332, 11471216), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Dong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, XD., Wang, YJ. & Yue, RX. Robust population designs for longitudinal linear regression model with a random intercept. Comput Stat 33, 903–931 (2018). https://doi.org/10.1007/s00180-017-0767-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-017-0767-6

Keywords

Navigation