Skip to main content
Log in

A skew-normal dynamic linear model and Bayesian forecasting

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Dynamic linear models are typically developed assuming that both the observational and system distributions are normal. In this work, we relax this assumption by considering a skew-normal distribution for the observational random errors, providing thus an extension of the standard normal dynamic linear model. Full Bayesian inference is carried out using the hierarchical representation of the model. The inference scheme is led by means of the adaptation of the Forward Filtering Backward sampling and the usual MCMC algorithms to perform the inference. The proposed methodology is illustrated by a simulation study and applied to the condition factor index of male and female anchovies off northern Chile. These indexes have not been studied in a dynamic linear model framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  MathSciNet  MATH  Google Scholar 

  • Arellano-Valle RB, Azzalini A (2006) On the unification of families of skew-normal distributions. Scand J Stat 33(3):561–574

    Article  MathSciNet  MATH  Google Scholar 

  • Arellano-Valle RB, Genton MG (2005) On fundamental skew distributions. J Multivar Anal 96(1):93–116

    Article  MathSciNet  MATH  Google Scholar 

  • Arellano-Valle RB, Genton MG (2010) Multivariate unified skew-elliptical distributions. Chil J Stat 1(1):17–33

    MathSciNet  MATH  Google Scholar 

  • Arellano-Valle RB, Castro LM, Genton MG, Gómez HW (2008) Bayesian inference for shape mixtures of skewed distributions, with application to regression analysis. Bayesian Anal 3(3):513–539

    Article  MathSciNet  MATH  Google Scholar 

  • Arellano-Valle RB, Contreras-Reyes JE, Stehlík M (2017) Generalized skew-normal negentropy and its application to fish condition factor time series. Entropy 19(10):528

    Article  Google Scholar 

  • Azzalini A, Capitanio A (1999) Statistical applications of the multivariate skew normal distribution. J R Stat Soc B 61(3):579–602

    Article  MathSciNet  MATH  Google Scholar 

  • Azzalini A, Dalla Valle A (1996) The multivariate skew-normal distribution. Biometrika 83(4):715–726

    Article  MathSciNet  MATH  Google Scholar 

  • Cabral CRB, Da-Silva CQ, Migon HS (2014) A dynamic linear model with extended skew-normal for the initial distribution of the state parameter. Comput Stat Data Anal 74:64–80

    Article  MathSciNet  MATH  Google Scholar 

  • Carter CK, Kohn R (1994) On Gibbs sampling for state space models. Biometrika 81(3):541–553

    Article  MathSciNet  MATH  Google Scholar 

  • Contreras-Reyes JE (2016) Analyzing fish condition factor index through skew-gaussian information theory quantifiers. Fluct Noise Lett 15(2):1650013

    Article  Google Scholar 

  • Contreras-Reyes JE, Canales TM, Rojas PM (2016) Influence of climate variability on anchovy reproductive timing off northern Chile. J Mar Syst 164:67–75

    Article  Google Scholar 

  • Fahrmeir L (1992) Posterior mode estimation by extended Kalman filtering for multivariate dynamic generalized linear models. J Am Stat Assoc 87(418):501–509

    Article  MATH  Google Scholar 

  • Frühwirth-Schnatter S (1994) Data augmentation and dynamic linear models. J Time Ser Anal 15(2):183–202

    Article  MathSciNet  MATH  Google Scholar 

  • Gamerman D, Lopes H (2006) Monte Carlo Markov chain: stochastic simulation for Bayesian inference. Chapman & Hall CRC Londres, London

    MATH  Google Scholar 

  • Gamerman D, Moreira AR (2004) Multivariate spatial regression models. J Multivar Anal 91(2):262–281

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfand AE, Ghosh SK (1998) Model choice: a minimum posterior predictive loss approach. Biometrika 85(1):1–11

    Article  MathSciNet  MATH  Google Scholar 

  • González-Farías G, Domínguez-Molina J, Gupta A (2004) The closed skew-normal distribution. In Skew-elliptical distributions and their applications: a journey beyond normality, pp 25–42. Chapman & Hall/CRC, Boca Raton, FL

  • Gupta AK, Aziz MA, Ning W (2013) On some properties of the unified skew normal distribution. J Stat Theor Pract 7(3):480–495

    Article  MathSciNet  Google Scholar 

  • Harrison PJ, Stevens CF (1976) Bayesian forecasting. J R Stat Soc B 38(3):205–247

    MathSciNet  MATH  Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82(1):35–45

    Article  MathSciNet  Google Scholar 

  • Kalman RE, Bucy RS (1961) New results in linear filtering and prediction theory. J Basic Eng 83(1):95–108

    Article  MathSciNet  Google Scholar 

  • Kim H, Ryu D, Mallick B, Genton M (2014) Mixtures of skewed kalman filters. J Multivar Anal 123:228–251

    Article  MathSciNet  MATH  Google Scholar 

  • Kitagawa G (1987) Non-gaussian state-space modeling of nonstationary time series. J Am Stat Assoc 82(400):1032–1041

    MathSciNet  MATH  Google Scholar 

  • Le Cren E (1951) The length–weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim Ecol 20:201–219

    Article  Google Scholar 

  • Naveau P, Genton MG, Shen X (2005) A skewed Kalman filter. J Multivar Anal 94(2):382–400

    Article  MathSciNet  MATH  Google Scholar 

  • Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd international workshop on distributed statistical computing, vol 124, p 125. Vienna

  • Plummer M (2016) rjags: Bayesian graphical models using MCMC. R package version 4-6

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6(1):7–11

    Google Scholar 

  • Rezaie J, Eidsvik J (2014) Kalman filter variants in the closed skew normal setting. Comput Stat Data Anal 75:1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Rezaie J, Eidsvik J (2016) A skewed unscented Kalman filter. Int J Control 89:2572–2583

    Article  MathSciNet  MATH  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MathSciNet  MATH  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc B 64(4):583–639

    Article  MathSciNet  MATH  Google Scholar 

  • Tong H, Lim KS (1980) Threshold autoregression, limit cycles and cyclical data. J R Stat Soc B 42:245–292

    MATH  Google Scholar 

  • West M, Harrison J (1999) Bayesian forecasting & dynamic models. Springer, Berlin

    MATH  Google Scholar 

  • West M, Harrison PJ, Migon HS (1985) Dynamic generalized linear models and Bayesian forecasting. J Am Stat Assoc 80(389):73–83

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the Instituto de Fomento Pesquero (IFOP, Valparaíso, Chile), for providing the biological information used in this work; and to Francisco Torres-Avilés (R.I.P) and José S. Romeo for all their useful comments on an early version of this paper. Arellano-Valle’s research was supported by Grant FONDECYT (Chile) Nro. 1120121 and 1150325. We are sincerely grateful to the two anonymous reviewers for their comments and suggestions that greatly improved an early version of this manuscript. All R codes used in this paper are available in bitbucket repository: https://bitbucket.org/vate01/sndlm_v2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier E. Contreras-Reyes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 606 KB)

Appendix: Proofs

Appendix: Proofs

Theorem 1

Proof

The proof is by induction and using some well-known multivariate normal distributional properties, as the following marginal–conditional relation:

$$\begin{aligned} \phi _k({\varvec{x}} \mid {\varvec{\mu }},{\varvec{\Sigma }})\phi _m({\varvec{y}} \mid {\varvec{\eta }}+ {\varvec{A}}({\varvec{x}} - {\varvec{\mu }}),{\varvec{\Psi }})= & {} \phi _k({\varvec{x}} \mid {\varvec{\mu }}+ {\varvec{\Sigma }}{\varvec{A}}'{\varvec{\Omega }}^{-1}({\varvec{y}}-{\varvec{\eta }}),\nonumber \\&{\varvec{\Sigma }}- {\varvec{\Sigma }}{\varvec{A}}'{\varvec{\Omega }}^{-1}{\varvec{A}}{\varvec{\Sigma }})\phi _m({\varvec{y}} \mid {\varvec{\eta }},{\varvec{\Omega }}),\qquad \end{aligned}$$
(32)

where \({\varvec{\Omega }}={\varvec{A}}{\varvec{\Sigma }}{\varvec{A}}' + {\varvec{\Psi }}\). In fact, suppose that the first step is true. Then, by the conditional independence assumptions considered in the Step 2, the evolutive prior distribution is

$$\begin{aligned} p({\varvec{\theta }}_t \mid {\varvec{D}}_{t-1} )= & {} \int _{\mathbb {R}^p} p({\varvec{\theta }}_t \mid {\varvec{\theta }}_{t-1} ) p({\varvec{\theta }}_{t-1} \mid {\varvec{D}}_{t-1})d{\varvec{\theta }}_{t-1} \\\propto & {} \int _{\mathbb {R}^p} \phi _p ({\varvec{\theta }}_t \mid {\varvec{G}}_t{\varvec{\theta }}_{t-1} ,{\varvec{W}}_t) \phi _p ({\varvec{\theta }}_{t-1} \mid {\varvec{m}}_{t-1|t-1}, {\varvec{C}}_{t-1|t-1})\\&\times \,\Phi _{t-1} ( {\varvec{\Lambda }}_{t-1|t-1} ({\varvec{\theta }}_{t-1} -{\varvec{m}}_{t-1|t-1}) + {\varvec{\tau }}_{t-1|t-1} \mid {\varvec{\Gamma }}_{t-1|t-1} ) d{\varvec{\theta }}_{t-1} \\= & {} \phi _p ({\varvec{\theta }}_t | {\varvec{m}}_{t|t-1} , {\varvec{C}}_{t|t-1})\\&\times \,\int _{\mathbb {R}^p} \phi _p ({\varvec{\theta }}_{t-1}-{\varvec{m}}_{t-1|t-1}\mid {\varvec{C}}_{t-1|t-1} {\varvec{G}}_t' {\varvec{C}}_{t|t-1}^{-1} ({\varvec{\theta }}_t - {\varvec{m}}_{t|t-1}),\\&{\varvec{C}}_{t-1|t-1}- {\varvec{C}}_{t-1|t-1} {\varvec{G}}_t' {\varvec{C}}_{t|t-1}^{-1}{\varvec{G}}_t{\varvec{C}}_{t-1|t-1})\\&\times \,\Phi _{t-1} ( {\varvec{\Lambda }}_{t-1|t-1} ({\varvec{\theta }}_{t-1} -{\varvec{m}}_{t-1|t-1}) \\&+\, {\varvec{\tau }}_{t-1|t-1} \mid {\varvec{\Gamma }}_{t-1|t-1}) d{\varvec{\theta }}_{t-1} \,\, (\text{ by }\,(32))\\= & {} \phi _p ({\varvec{\theta }}_t \mid {\varvec{m}}_{t|t-1} , {\varvec{C}}_{t|t-1})\\&\times \,\Phi _{t-1} ( {\varvec{\Lambda }}_{t-1|t-1}{\varvec{C}}_{t-1|t-1} {\varvec{G}}_t' {\varvec{C}}_{t|t-1}^{-1} ({\varvec{\theta }}_t - {\varvec{m}}_{t|t-1})\\&+\, {\varvec{\tau }}_{t-1|t-1} \mid {\varvec{\Gamma }}_{t-1|t-1} + {\varvec{\Lambda }}_{t-1|t-1} ({\varvec{C}}_{t-1|t-1} \\&-\, {\varvec{C}}_{t-1|t-1} {\varvec{G}}_t' {\varvec{C}}_{t|t-1}^{-1}{\varvec{G}}_t{\varvec{C}}_{t-1|t-1}){\varvec{\Lambda }}_{t-1|t-1}')\,\,(\mathrm{by}\,(7)), \end{aligned}$$

which is the kernel of the pdf of \({\varvec{\theta }}_t \mid {\varvec{D}}_{t-1} \sim SUN_{p,t-1}\big ( {\varvec{m}}_{t|t-1}, {\varvec{C}}_{t|t-1}, {\varvec{\Lambda }}_{t|t-1},{\varvec{\tau }}_{t|t-1},{\varvec{\Gamma }}_{t|t-1}\big )\). To proof the Step 3 in the sequential inference scheme, we have by Eq. (32) and the relation \({\varvec{m}}_{t|t}-{\varvec{m}}_{t|t-1}= {\varvec{C}}_{t|t-1}{\varvec{F}}_t {\varvec{Q}}_t^{-1}({\varvec{y}}_t - {\varvec{f}}_t)\) that

$$\begin{aligned} p({\varvec{y}}_t \mid {\varvec{D}}_{t-1})= & {} \int _{\mathbb {R}^p} p({\varvec{y}}_t \mid {\varvec{\theta }}_t , {\varvec{D}}_{t-1}) p({\varvec{\theta }}_t \mid {\varvec{D}}_{t-1}) d{\varvec{\theta }}_t \\\propto & {} \int _{\mathbb {R}^p} \phi _r\left( {\varvec{y}}_t \mid {\varvec{F}}'_t {\varvec{\theta }}_t -\sqrt{\frac{2}{\pi }}{\varvec{\Delta }}_t, {\varvec{V}}_t\right) \Phi _1\left( {\varvec{\Lambda }}_t \left( {\varvec{y}}_t - {\varvec{F}}'_t{\varvec{\theta }}_t +\sqrt{\frac{2}{\pi }}{\varvec{\Delta }}_t\right) \right) \\&\times \, \phi _p({\varvec{\theta }}_t \mid {\varvec{m}}_{t|t-1} , {\varvec{C}}_{t|t-1})\Phi _{t-1}({\varvec{\Lambda }}_{t|t-1}({\varvec{\theta }}_t - {\varvec{m}}_{t|t-1}) \\&+\, {\varvec{\tau }}_{t|t-1} \mid {\varvec{\Gamma }}_{t|t-1}) d{\varvec{\theta }}_t \\= & {} \phi _r ({\varvec{y}}_t \mid {\varvec{f}}_t, {\varvec{Q}}_t) \int _{\mathbb {R}^p} \phi _p ({\varvec{\theta }}_t \mid {\varvec{m}}_{t|t}, {\varvec{C}}_{t|t})\Phi _t\left( {\varvec{\Lambda }}_{t\mid t} ({\varvec{\theta }}_t - {\varvec{m}}_{t|t}) \right. \\&\left. +\, {\varvec{\tau }}_{t\mid t}\mid {\varvec{\Gamma }}_{t\mid t} \right) d{\varvec{\theta }}_t, \end{aligned}$$

where

$$\begin{aligned} {\varvec{\Lambda }}_{t\mid t}=\left( \begin{array}{c} -{\varvec{\Lambda }}_t {\varvec{F}}'_t \\ {\varvec{\Lambda }}_{t|t-1} \end{array}\right) ,\,\,{\varvec{\tau }}_{t\mid t}= \left( \begin{array}{c} {\varvec{\Lambda }}_t {\varvec{V}}_t{\varvec{Q}}^{-1}_t({\varvec{y}}_t - {\varvec{f}}_t)\\ {\varvec{\Lambda }}_{t|t-1} {\varvec{C}}_{t|t-1}{\varvec{F}}'_t{\varvec{Q}}^{-1}_t ({\varvec{y}}_t-{\varvec{f}}_t)+ {\varvec{\tau }}_{t|t-1} \end{array}\right) \end{aligned}$$

and \({\varvec{\Gamma }}_{t\mid t} = \mathrm{diag}(1,{\varvec{\Gamma }}_{t|t-1})\). Thus, by Eq. (7) we have

$$\begin{aligned} p({\varvec{y}}_t \mid {\varvec{D}}_{t-1})\propto & {} \phi _r ({\varvec{y}}_t \mid {\varvec{f}}_t, {\varvec{Q}}_t) \Phi _t({\varvec{\tau }}_{t \mid t} \mid {\varvec{\Gamma }}_{t|t} + {\varvec{\Lambda }}_{t\mid t} {\varvec{C}}_{t|t}{\varvec{\Lambda }}'_{t\mid t} )\\= & {} \phi _r ({\varvec{y}}_t \mid {\varvec{f}}_t, {\varvec{Q}}_t) \Phi _t \left( \left( \begin{array}{c} {\varvec{\Lambda }}_t{\varvec{V}}_t{\varvec{Q}}_t^{-1} \\ {\varvec{\Lambda }}_{t|t-1}{\varvec{C}}_{t|t-1}{\varvec{F}}_t'{\varvec{Q}}_t^{-1} \\ \end{array}\right) ({\varvec{y}}_t-{\varvec{f}}_t) + \left( \begin{array}{l} 0\\ {\varvec{\tau }}_{t|t-1} \end{array}\right) \mid \right. \\&\left. {\varvec{\Gamma }}_{t|t} + {\varvec{\Lambda }}_{t\mid t} {\varvec{C}}_{t|t}{\varvec{\Lambda }}'_{t\mid t} \phantom {\begin{array}{c} {\varvec{\Lambda }}_t{\varvec{V}}_t{\varvec{Q}}_t^{-1} \\ {\varvec{\Lambda }}_{t|t-1}{\varvec{C}}_{t|t-1}{\varvec{F}}_t'{\varvec{Q}}_t^{-1} \\ \end{array}}\right) , \end{aligned}$$

which corresponds to the kernel of the pdf of \( {\varvec{Y}}_t | {\varvec{D}}_{t-1} \sim SUN_{r,t}({\varvec{f}}_t , {\varvec{Q}}_t , \tilde{{\varvec{\Lambda }}}_t, \tilde{{\varvec{\tau }}}_t,\tilde{{\varvec{\Gamma }}}_t )\). To prove the Step 4 in the sequential inference scheme, we proceed as follows

$$\begin{aligned} p({\varvec{\theta }}_t \mid {\varvec{y}}_t , {\varvec{D}}_{t-1} )\propto & {} p({\varvec{y}}_t \mid {\varvec{\theta }}_t) p({\varvec{\theta }}_t \mid {\varvec{D}}_{t-1})\\= & {} \phi _r\left( {\varvec{y}}_t \mid {\varvec{F}}'_t {\varvec{\theta }}_t-\sqrt{\frac{2}{\pi }}{\varvec{\Delta }}_t,{\varvec{V}}_t\right) \phi _p({\varvec{\theta }}_t \mid {\varvec{m}}_{t|t-1} , {\varvec{C}}_{t|t-1})\\&\times \, \Phi _1\left( {\varvec{\Lambda }}_t \left( {\varvec{y}}_t - {\varvec{F}}'_t{\varvec{\theta }}_t+\sqrt{\frac{2}{\pi }}{\varvec{\Delta }}_t\right) \right) \\&\times \,\Phi _{t-1}({\varvec{\Lambda }}_{t|t-1}({\varvec{\theta }}_t - {\varvec{m}}_{t|t-1}) + {\varvec{\tau }}_{t|t-1} \big | {\varvec{\Gamma }}_{t|t-1})\\\propto & {} \phi _p ({\varvec{\theta }}_t \mid {\varvec{m}}_{t|t-1} + {\varvec{C}}_{t|t-1}{\varvec{F}}_t {\varvec{Q}}_t^{-1}({\varvec{y}}_t - {\varvec{f}}_t), {\varvec{C}}_{t|t-1}\\&-\, {\varvec{C}}_{t|t-1}{\varvec{F}}_t{\varvec{Q}}_t^{-1} {\varvec{F}}_t'{\varvec{C}}_{t|t-1}) \Phi _1\left( {\varvec{\Lambda }}_t \left( {\varvec{y}}_t - {\varvec{F}}'_t{\varvec{\theta }}_t + \sqrt{\frac{2}{\pi }}{\varvec{\Delta }}_t\right) \right) \\&\times \, \Phi _{t-1}({\varvec{\Lambda }}_{t|t-1}({\varvec{\theta }}_t - {\varvec{m}}_{t|t-1} ) + {\varvec{\tau }}_{t|t-1} \mid {\varvec{\Gamma }}_{t|t-1})\,\,(\text{ by } \text{ Eq. }\,32)\\= & {} \phi _p ({\varvec{\theta }}_t \mid {\varvec{m}}_{t|t}, {\varvec{C}}_{t|t})\Phi _1(- {\varvec{\Lambda }}_t {\varvec{F}}'_t ( {\varvec{\theta }}_t -{\varvec{m}}_{t|t}) + {\varvec{\Lambda }}_t {\varvec{V}}_t {\varvec{Q}}^{-1}_t ({\varvec{y}}_t - {\varvec{f}}_t))\\&\times \, \Phi _{t-1}({\varvec{\Lambda }}_{t|t-1}({\varvec{\theta }}_t - {\varvec{m}}_{t|t}) + {\varvec{\Lambda }}_{t|t-1}({\varvec{m}}_{t|t} - {\varvec{m}}_{t|t-1}) + {\varvec{\tau }}_{t|t-1} \mid {\varvec{\Gamma }}_{t|t-1})\\= & {} \phi _p ({\varvec{\theta }}_t | {\varvec{m}}_{t|t}, {\varvec{C}}_{t|t})\Phi _t\left( \left( \begin{array}{l} -{\varvec{\Lambda }}_t{\varvec{F}}_t' \\ {\varvec{\Lambda }}_{t|t-1} \\ \end{array} \right) ({\varvec{\theta }}_t -{\varvec{m}}_{t|t})\right. \\&\left. +\,\left( \begin{array}{c} {\varvec{\Lambda }}_t{\varvec{V}}_t{\varvec{Q}}_t^{-1}({\varvec{y}}_t-{\varvec{f}}_t) \\ {\varvec{\Lambda }}_{t|t-1}{\varvec{C}}_{t|t-1}{\varvec{F}}_t {\varvec{Q}}_t^{-1} ({\varvec{y}}_t - {\varvec{f}}_t)+ {\varvec{\tau }}_{t|t-1} \\ \end{array} \right) \mid \left( \begin{array}{ll} 1 &{} \quad {\varvec{0}}\\ {\varvec{0}} &{}\quad {\varvec{\Gamma }}_{t|t-1}\end{array}\right) \right) , \end{aligned}$$

where the relations \({\varvec{\Lambda }}_t ({\varvec{y}}_t -{\varvec{F}}'_t {\varvec{\theta }}_t + \sqrt{\frac{2}{\pi }}{\varvec{\Delta }}_t ) = - {\varvec{\Lambda }}_t {\varvec{F}}'_t ( {\varvec{\theta }}_t -{\varvec{m}}_{t|t}) + {\varvec{\Lambda }}_t {\varvec{V}}_t {\varvec{Q}}^{-1}_t ({\varvec{y}}_t - {\varvec{f}}_t)\) and \({\varvec{m}}_{t|t}-{\varvec{m}}_{t|t-1}= {\varvec{C}}_{t|t-1}{\varvec{F}}_t {\varvec{Q}}_t^{-1}({\varvec{y}}_t - {\varvec{f}}_t)\) are used. This last expression is the density kernel of \({\varvec{\theta }}_{t}\mid {\varvec{D}}_{t} \sim SUN_{p,t}({\varvec{m}}_{t|t} , {\varvec{C}}_{t|t} , {\varvec{\Lambda }}_{t|t}, {\varvec{\tau }}_{t|t},{\varvec{\Gamma }}_{t|t} )\), concluding thus the proof. \(\square \)

Theorem 2

Proof

Since \({\varvec{\theta }}_{t-k} \mid {\varvec{D}}_{t-k} \sim SUN_{p,t-k} ({\varvec{m}}_{t-k|t-k},{\varvec{C}}_{t-k|t-k},{\varvec{\Lambda }}_{t-k|t-k},{\varvec{\tau }}_{t-k|t-k},{\varvec{\Gamma }}_{t-k|t-k})\) and \({\varvec{\theta }}_{t-k+1} \mid {\varvec{\theta }}_{t-k}, {\varvec{D}}_{t-k} \sim N_p ({\varvec{G}}_{t-k+1} {\varvec{\theta }}_{t-k} ,{\varvec{W}}_{t-k+1})\), we have by Eq. (32)

$$\begin{aligned} p({\varvec{\theta }}_{t-k} \mid {\varvec{\theta }}_{t-k+1}, {\varvec{D}}_{t-k} )\propto & {} p({\varvec{\theta }}_{t-k} | {\varvec{D}}_{t-k}) p({\varvec{\theta }}_{t-k+1} | {\varvec{\theta }}_{t-k} , {\varvec{D}}_{t-k}) \\\propto & {} \phi _p({\varvec{\theta }}_{t-k} \mid {\varvec{m}}_{t-k\mid t-k},{\varvec{C}}_{t-k\mid t-k} )\\&\times \, \phi _p ({\varvec{\theta }}_{t-k+1}\mid {\varvec{G}}_{t-k+1} {\varvec{\theta }}_{t-k} , {\varvec{W}}_{t-k+1})\\&\times \, \Phi _{t-k} ({\varvec{\Lambda }}_{t-k\mid t-k}({\varvec{\theta }}_{t-k} - {\varvec{m}}_{t-k\mid t-k}) + {\varvec{\tau }}_{t-k\mid t-k}\mid {\varvec{\Gamma }}_{t-k\mid t-k}) \\\propto & {} \phi _p ({\varvec{\theta }}_{t-k} \mid {\varvec{m}}_{t-k\mid t-k} + {\varvec{B}}_{t-k} ({\varvec{\theta }}_{t-k+1} - {\varvec{m}}_{t-k+1\mid t-k}),\\&{\varvec{C}}_{t-k\mid t-k} - {\varvec{B}}_{t-k} {\varvec{C}}_{t-k+1\mid t-k} {\varvec{B}}'_{t-k})\\&\times \,\Phi _{t-k} ({\varvec{\Lambda }}_{t-k\mid t-k}({\varvec{\theta }}_{t-k} - {\varvec{m}}_{t-k\mid t-k}) + {\varvec{\tau }}_{t-k\mid t-k}\mid {\varvec{\Gamma }}_{t-k\mid t-k})\\= & {} \phi _p ({\varvec{\theta }}_{t-k} \mid {\varvec{h}}_{t}(k), {\varvec{H}}_{t}(k))\Phi _{t-k} ({\varvec{\Lambda }}_{t-k\mid t-k}({\varvec{\theta }}_{t-k} - {\varvec{h}}_{t}(k))\\&+\, {\varvec{\Lambda }}_{t-k\mid t-k}({\varvec{h}}_{t}(k) - {\varvec{m}}_{t-k\mid t-k})+{\varvec{\tau }}_{t-k\mid t-k}\mid {\varvec{\Gamma }}_{t-k\mid t-k}), \end{aligned}$$

where \({\varvec{h}}_{t}(k) - {\varvec{m}}_{t-k\mid t-k}= {\varvec{B}}_{t-k} ({\varvec{\theta }}_{t-k+1} - {\varvec{m}}_{t-k+1\mid t-k})\). Thus, this last result corresponds to the density kernel of the distribution given in Eq. (20). \(\square \)

Theorem 3

Proof

We need to solve the following integral

$$\begin{aligned} p({\varvec{\theta }}_{t-k} \mid {\varvec{D}}_t)= & {} \int _{\mathbb {R}^p} p({\varvec{\theta }}_{t-k} \mid {\varvec{\theta }}_{t-k+1} , {\varvec{D}}_t) p ({\varvec{\theta }}_{t-k+1}\mid {\varvec{D}}_t) d{\varvec{\theta }}_{t-k+1}. \end{aligned}$$

For this, note first that \(p({\varvec{\theta }}_{t-k} \mid {\varvec{\theta }}_{t-k+1} , {\varvec{D}}_t) = p({\varvec{\theta }}_{t-k} \mid {\varvec{\theta }}_{t-k+1} , {\varvec{D}}_{t-k})\), where by Theorem 2 \({\varvec{\theta }}_{t-k} \mid {\varvec{\theta }}_{t-k+1}, {\varvec{D}}_{t-k} \sim SUN_{p,t-k} ({\varvec{h}}_{t}(k),{\varvec{H}}_{t}(k),{\varvec{\Lambda }}_t(k),{\varvec{\tau }}_t(k), {\varvec{\Gamma }}_t(k))\) and by induction \({\varvec{\theta }}_{t-k+1}\mid {\varvec{D}}_t \sim \)\(SUN_{p,t} ({\varvec{m}}_{t-k+1|t},{\varvec{C}}_{t-k+1|t},{\varvec{\Lambda }}_{t-k+1|t},{\varvec{\tau }}_{t-k+1|t}, {\varvec{\Gamma }}_{t-k+1|t})\).

Hence, from the definitions of \({\varvec{h}}_{t}(k),\)\({\varvec{H}}_{t}(k)\), \(\Lambda _t(k)\), \({\varvec{\tau }}_t(k)\) and \({\varvec{\Gamma }}_t(k)\), the relations \({\varvec{\Lambda }}_{t-k+1|t-k}={\varvec{\Lambda }}_{t-k|t-k}{\varvec{B}}_{t-k}\), \({\varvec{\tau }}_{t-k+1|t-k}={\varvec{\tau }}_{t-k|t-k}\), \({\varvec{\Gamma }}_{t-k+1|t-k}={\varvec{\Gamma }}_t(k)+{\varvec{\Lambda }}_t(k){\varvec{H}}_t(k){\varvec{\Lambda }}_t(k)'\), by applying the Eqs. (32) and (7), we have

$$\begin{aligned} p({\varvec{\theta }}_{t-k} \mid {\varvec{D}}_t)\propto & {} \int _{\mathbb {R}^p}\frac{\phi _p ({\varvec{\theta }}_{t-k} \mid {\varvec{h}}_{t}(k), {\varvec{H}}_{t}(k))\Phi _{t-k} ({\varvec{\Lambda }}_t(k)({\varvec{\theta }}_{t-k} - {\varvec{h}}_{t}(k)) + {\varvec{\tau }}_t(k) \mid {\varvec{\Gamma }}_t(k))}{\Phi _{t-k} ({\varvec{\tau }}_t(k) \mid {\varvec{\Gamma }}_t(k)+{\varvec{\Lambda }}_t(k){\varvec{H}}_{t}(k){\varvec{\Lambda }}'_t(k))}\\&\times \, \phi _p ({\varvec{\theta }}_{t-k+1} \mid {\varvec{m}}_{t-k+1|t},{\varvec{C}}_{t-k+1|t})\\&\times \, \Phi _{t} ({\varvec{\Lambda }}_{t-k+1|t}({\varvec{\theta }}_{t-k+1} - m_{t-k+1|t}) + {\varvec{\tau }}_{t-k+1|t} \mid {\varvec{\Gamma }}_{t-k+1|t}) d{\varvec{\theta }}_{t-k+1}\\= & {} \phi _{p}({\varvec{\theta }}_{t-k}\mid {\varvec{m}}_{t-k|t},{\varvec{C}}_{t-k|t})\\&\times \, \Phi _{t-k} ({\varvec{\Lambda }}_{t-k|t-k}({\varvec{\theta }}_{t-k} - {\varvec{m}}_{t-k|t-k}) + {\varvec{\tau }}_{t-k\mid t-k}\mid {\varvec{\Gamma }}_{t-k\mid t-k}) \\&\times \, \int _{\mathbb {R}^p} \phi _p ({\varvec{\theta }}_{t-k+1}-{\varvec{m}}_{t-k+1|t} \mid {\varvec{C}}_{t-k+1|t}{\varvec{B}}_{t-k}'{\varvec{C}}_{t-k|t}^{-1}({\varvec{\theta }}_{t-k} - {\varvec{m}}_{t-k|t}),\\&{\varvec{S}}_{t-k+1|t})\Phi _{k-1} \left( {\varvec{\Lambda }}^{(2)}_{t-k+1|t}({\varvec{\theta }}_{t-k+1} - {\varvec{m}}_{t-k+1|t}) + {\varvec{\tau }}^{(2)}_{t-k+1|t} \mid {\varvec{\Gamma }}^{(2)}_{t-k+1|t} \right) \\&\times \, \Phi _1(-{\varvec{\Lambda }}_{t-k+1}{\varvec{F}}'_{t-k+1}({\varvec{\theta }}_{t-k+1} - {\varvec{m}}_{t-k+1|t})+{\varvec{\Lambda }}_{t-k+1} ({\varvec{y}}_{t-k+1} \\&-\, {\varvec{F}}'_{t-k+1}{\varvec{m}}_{t-k+1|t})) d{\varvec{\theta }}_{t-k+1}\\= & {} \phi _{p}({\varvec{\theta }}_{t-k}\mid {\varvec{m}}_{t-k|t},{\varvec{C}}_{t-k|t})\\&\times \, \Phi _{t-k} ({\varvec{\Lambda }}_{t-k|t-k}({\varvec{\theta }}_{t-k} - {\varvec{m}}_{t-k|t-k}) + {\varvec{\tau }}_{t-k\mid t-k}\mid {\varvec{\Gamma }}_{t-k\mid t-k})\\&\times \, \int _{\mathbb {R}^p} \phi _p ({\varvec{\theta }}_{t-k+1}-{\varvec{m}}_{t-k+1|t} \mid {\varvec{C}}_{t-k+1|t}{\varvec{B}}_{t-k}'{\varvec{C}}_{t-k|t}^{-1}({\varvec{\theta }}_{t-k} - {\varvec{m}}_{t-k|t}),\\&{\varvec{S}}_{t-k+1|t}) \Phi _k\left( \left( \begin{array}{c} -{\varvec{\Lambda }}_{t-k+1}{\varvec{F}}'_{t-k+1}\\ {\varvec{\Lambda }}^{(2)}_{t-k+1|t} \end{array}\right) ({\varvec{\theta }}_{t-k+1}-{\varvec{m}}_{t-k+1|t})\right. \\&\left. +\, \left( \begin{array}{l} {\varvec{\Lambda }}_{t-k+1}({\varvec{y}}_{t-k+1}-{\varvec{F}}'_{t-k+1}{\varvec{m}}_{t-k+1|t}+\sqrt{\frac{2}{\pi }}\Delta _{t-k+1})\\ {\varvec{\tau }}^{(2)}_{t-k+1|t} \end{array}\right) \mid \left( \begin{array}{ll} 1&{}\quad {\varvec{0}}\\ {\varvec{0}} &{}\quad {\varvec{\Gamma }}_{t-k+1|t} \end{array}\right) \right) d{\varvec{\theta }}_{t-k+1}\\= & {} \phi _{p}({\varvec{\theta }}_{t-k}\mid {\varvec{m}}_{t-k|t},{\varvec{C}}_{t-k|t})\\&\times \,\Phi _{t-k} ({\varvec{\Lambda }}_{t-k|t-k}({\varvec{\theta }}_{t-k} - {\varvec{m}}_{t-k|t-k}) + {\varvec{\tau }}_{t-k\mid t-k}\mid {\varvec{\Gamma }}_{t-k\mid t-k})\\&\times \, \Phi _k\left( \left( \begin{array}{c} -{\varvec{\Lambda }}_{t-k+1}{\varvec{F}}'_{t-k+1}\\ {\varvec{\Lambda }}^{(2)}_{t-k+1|t} \end{array}\right) {\varvec{C}}_{t-k+1|t}{\varvec{B}}_{t-k}{\varvec{C}}_{t-k|t}^{-1}({\varvec{\theta }}_{t-k} - {\varvec{m}}_{t-k|t})\right. \\&\left. +\, \left( \begin{array}{l} {\varvec{\Lambda }}_{t-k+1}({\varvec{y}}_{t-k+1}-{\varvec{F}}'_{t-k+1}{\varvec{m}}_{t-k+1|t}+\sqrt{\frac{2}{\pi }}\Delta _{t-k+1}) \\ {\varvec{\tau }}^{(2)}_{t-k+1|t} \end{array}\right) \mid {\varvec{\Gamma }}_{t-k|t} \right) \\= & {} \phi _{p}({\varvec{\theta }}_{t-k}\mid {\varvec{m}}_{t-k|t},{\varvec{C}}_{t-k|t}) \Phi _t ({\varvec{\Lambda }}_{t-k|t}({\varvec{\theta }}_{t-k} - {\varvec{m}}_{t-k|t}) + {\varvec{\tau }}_{t-k|t} \mid {\varvec{\Gamma }}_{t-k|t}). \end{aligned}$$

Thus, we have the kernel of the \(SUN_{p,t}({\varvec{m}}_{t-k|t} , {\varvec{C}}_{t-k|t}, {\varvec{\Lambda }}_{t-k|t}, {\varvec{\tau }}_{t-k|t},{\varvec{\Gamma }}_{t-k|t} )\) pdf, which concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arellano-Valle, R.B., Contreras-Reyes, J.E., Quintero, F.O.L. et al. A skew-normal dynamic linear model and Bayesian forecasting. Comput Stat 34, 1055–1085 (2019). https://doi.org/10.1007/s00180-018-0848-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-018-0848-1

Keywords

Navigation