Skip to main content
Log in

Bayesian probabilistic extensions of a deterministic classification model

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

This paper extends deterministic models for Boolean regression within a Bayesian framework. For a given binary criterion variable Y and a set of k binary predictor variables X1,…, Xk, a Boolean regression model is a conjunctive (or disjunctive) logical combination consisting of a subset S of the X variables, which predicts Y. Formally, Boolean regression models include a specification of a k-dimensional binary indicator vector (θ1,…,θk) with θj = 1 iff XjS. In a probabilistic extension, a parameter π is added which represents the probability of the predicted value \({\hat y_i}\) and the observed value yi differing (for any observation i). Within a Bayesian framework, a posterior distribution of the parameters (θ1,…, θk, π) is looked for. The advantages of such a Bayesian approach include a proper account of the uncertainty in the model estimates and various possibilities for model checking (using posterior predictive checks). We illustrate this method with an example using real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. 1In total, 314 = 4, 782, 969 combinations are to be considered: each of the 14 predictors is either positively present, negatively present, or not present.

References

  • Biswas, N.N. (1975). Introduction to logic and switching theory. New York: Gordon and Breach.

    MATH  Google Scholar 

  • Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (1995). Bayesian data analysis. London: Chapman & Hall.

    Book  Google Scholar 

  • Gelman, A., Leenen, I., Van Mechelen, I., & De Boeck, P. (1999). Bridges between deterministic and probabilistic models for binary data. Manuscript submitted for publication.

  • Gelman, A., Meng, X.L., & Stern, H.S. (1996). Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Statistica Sinica, 6, 733–807.

    MathSciNet  MATH  Google Scholar 

  • Gelman, A., & Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–511.

    Article  Google Scholar 

  • Haider, A.K. (1978). Grouping table for the minimization of n-variable Boolean functions. Proceedings of the Institution of Electric Engineers London, 125, 474–482.

    Article  Google Scholar 

  • Leenen, I., & Van Mechelen, I. (1998). A branch-and-bound algorithm for Boolean regression. In: I. Balderjahn, R. Mathar, & M. Schader (Eds.), Data Highways and Information Flooding, a Challenge for Classification and Data Analysis (pp. 164–171). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • McCluskey, E.J. (1965). Introduction to the theory of switching circuits. New York: McGraw-Hill.

    MATH  Google Scholar 

  • McKenzie, D.M., Clarke, D.M., & Low, L.H. (1992). A method of constructing parsimonious diagnostic and screening tests. International Journal of Methods in Psychiatric Research, 2, 71–79.

    Google Scholar 

  • Mickey, M.R., Mundle, P., & Engelman, L. (1983). Boolean factor analysis. In W.J. Dixon (Ed.), BMDP statistical software (pp. 538–545, p. 692). Berkeley, CA: California Press.

    Google Scholar 

  • Ragin, C.C., Mayer, S.E., & Drass, K.A. (1984). Assessing discrimination: A Boolean approach. American Sociological Review, 49, 221–234.

    Article  Google Scholar 

  • Rubin, D.B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. Annals of Statistics, 12, 1151–1172.

    Article  MathSciNet  Google Scholar 

  • Sen, M. (1983). Minimization of Boolean functions of any number of variables using decimal labels. Information Sciences, 30, 37–45.

    Article  MathSciNet  Google Scholar 

  • Sneath, P.H.A., & Sokal, R.R. (1973). Numerical taxonomy. San Francisco: Freeman.

    MATH  Google Scholar 

  • Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–352.

    Article  Google Scholar 

  • Van Mechelen, I. (1988). Prediction of a dichotomous criterion variable by means of a logical combination of dichotomous predictors. Mathémathiques, Informatique et Sciences Humaines, 102, 47–54.

    MathSciNet  MATH  Google Scholar 

  • Van Mechelen, I., & De Boeck, P. (1990). Projection of a binary criterion into a model of hierarchical classes. Psychometrika, 55, 677–694.

    Article  Google Scholar 

  • Wierzbicka, A. (1992). Defining emotion concepts. Cognitive Science, 16, 539–581.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors gratefully acknowledge Brian Junker, Herbert Hoijtink, and William Browne for helpful comments on an earlier draft of this paper, and Johannes Berkhof for helpful discussions.

This work was supported in part by the Research Fund of K.U.Leuven, Grant OT/96/10, and the U.S. National Science Foundation Grant SBR-9708424.

Appendix: Deriving posterior distributions

Appendix: Deriving posterior distributions

We first compute the prior predictive distribution p(y):

$$\begin{aligned} p(y) &=\sum_{\vartheta \in \Theta}\left[\int_{0}^{1} p(y | \vartheta, \pi) p(\vartheta) p(\pi) d \pi\right] \\ &=\sum_{\vartheta \in \Theta}\left[\int_{0}^{1} \pi^{D_{\vartheta}}(1-\pi)^{n-D_{\vartheta}} \frac{1}{2^{k}} 1\; d \pi\right] \\ &=\sum_{\vartheta \in \Theta}\left[\frac{1}{2^{k}} \frac{\Gamma\left(D_{\vartheta}+1\right) \Gamma\left(n-D_{\vartheta}+1\right)}{\Gamma(n+2)} \times \right.\\&\qquad\qquad\qquad\qquad\left.\int_{0}^{1} \frac{\Gamma(n+2)}{\Gamma\left(D_{\vartheta}+1\right) \Gamma\left(n-D_{\vartheta}+1\right)} \pi^{D_{\vartheta}}(1-\pi)^{n-D_{\vartheta}} d \pi\right]\\ &=\sum_{\vartheta \in \Theta}\left[\frac{1}{2^{k}} \frac{D_{\vartheta} !,\left(n-D_{\vartheta}\right) !}{(n+1) !}\right] \\ &=\frac{1}{2^{k}(n+1)} \sum_{\vartheta \in \Theta} \frac{1}{\left(D_{\vartheta}\right)}, \end{aligned}$$

the integral in the third step being equal to 1 as it is the area under a Beta density.

For the posterior distribution of (θ,π), we start from Eq. (5):

$$\begin{array}{l}p\left( {\theta ,\pi |y} \right) = {{p\left( {y|\theta ,\pi } \right)p\left( {\theta ,\pi } \right)} \over {p\left( y \right)}}\\{\qquad\qquad=\frac{\pi^{D_{\theta}}(1-\pi)^{n-D_{\theta}} \frac{1}{2^{\mathrm{k}}}}{\frac{1}{2^{k}(n+1)} \sum_{\vartheta \in \Theta} \frac{1}{\left(\begin{array}{c}{n} \\ {D_{s}}\end{array}\right)}}} \\\qquad\qquad {=\frac{(n+1) \pi^{D_{\theta}}(1-\pi)^{n-D_{\theta}}}{\sum_{\vartheta \in \Theta} \frac{1}{\left(D_{\vartheta}^{n}\right)}}}\end{array}$$

To derive the marginal posterior distribution of θ, π is integrated out in the joint posterior distribution for θ and π in the formula above.

$$\begin{array}{*{20}c}{p\left( {\theta |y} \right)\;= \;\int_0^1 {p\left( {\theta ,\,\pi |y} \right)} } d\pi \\ {\quad \quad \quad\qquad = \int_0^1 {{{(n + 1){\pi ^{{D_\theta }}}{{(1 - \pi )}^{n - {D_\theta }}}} \over {\sum\limits_{\vartheta \in \Theta } {{1 \over {\left( {_{{D_\vartheta }}^{\;\;n}} \right)}}} }}} }d\pi \\ {\qquad \qquad \qquad \qquad\qquad\qquad\qquad\qquad\quad = {{{1 \over {\left( {_{{D_\theta }}^{\;\;n}} \right)}}} \over {\sum\limits_{\vartheta \in \Theta } {{1 \over {\left( {_{{D_\vartheta }}^{\;\;n}} \right)}}} }}\int_0^1 {\left( {\begin{array}{*{20}c}n \\ {{D_\theta }} \\ \end{array} } \right)(n + 1){\pi ^{{D_\theta }}}{{(1 - \pi )}^{n - {D_\theta }}}d\pi ,} } \\ \end{array}$$

the latter integral being 1 as it is again the area under a Beta density.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leenen, I., Van Mechelen, I. & Gelman, A. Bayesian probabilistic extensions of a deterministic classification model. Computational Statistics 15, 355–371 (2000). https://doi.org/10.1007/s001800000039

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001800000039

Keywords