Skip to main content
Log in

Are Regression Series Estimators Efficient in Practice? A Computational Comparison Study

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

This paper is concerned with the practical performances of series-type estimators of a regression function. For different choices of orthonormal bases (Legendre polynomials, trigonometric functions, wavelets) we compare, by simulation arguments, the performances of series-type estimators with the results obtained by two of the most popular nonparametric regression estimation methods: kernel estimation and least-squares cubic splines. It will be shown that orthonormal series estimators are competitive in relation to these former nonparametric procedures. No agreement has emerged on the best method, the results being highly dependent on the nature of the estimated regression function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Andrews, D.W.K. (1991), ‘Asymptotic normality of series estimators for nonparametric and semiparametric regression models’, Econometrica59, 307–345.

    Article  MathSciNet  Google Scholar 

  • Antoniadis, A., Grégoire, G. \; McKeague, I.W. (1994), ‘Wavelet methods for curve estimation’, Journal of the American Statistical Association89, 1340–1353.

    Article  MathSciNet  Google Scholar 

  • Antoniadis, A. \; Pham, D.T. (1998), ‘Wavelet regression for random or irregular design’, Computational Statistics \; Data Analysis, 28, 353–369.

    Article  MathSciNet  Google Scholar 

  • Breiman, L. \; Peters, S. (1992), ‘Comparing Automatic Smoothers (A Public Service Enterprise)’, International Statistical Review60, 3, 271–290.

    Article  Google Scholar 

  • Buckheit, J., Chen, S., Donoho, D. \; Johnstone, I. (1996), WaveLab.701, Stanford University \; Jeffrey Scargle, NASA-Ames, [www https://doi.org/www-stat.stanford.edu/∼wavelab].

  • Cohen, A., Daubechies, I. \; Vial, P. (1993). ‘Wavelets on the interval and fast wavelet transform’. Journal of Applied and Computational Harmonic Analysis1, 54–81.

    Article  MathSciNet  Google Scholar 

  • Daubechies, I. (1988), ‘Orthonormal bases of compactly supported wavelets’, Communications on Pure and Applied Mathematics41, 909–996.

    Article  MathSciNet  Google Scholar 

  • Daubechies, I. (1992), Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, Philadelphia.

    Book  Google Scholar 

  • Delecroix, M. \; Protopopescu, C. (1998a), ‘Regression Series Estimators: the MISE Approach’, Preprint GREMAQ, Université Toulouse I.

  • Delecroix, M. \; Protopopescu, C. (1998b), ‘Consistency of a Least Squares Orthogonal Series Estimator for a Regression Function’, Preprint GREMAQ, Université Toulouse I.

  • Donoho, D.L., Johnstone, I.M., Kerkyacharian, G. \; Picard, D. (1995), ‘Wavelet shrinkage: Asymptopia? (with discussion)’, Journal of the Royal Statistical Society(Series B)57, 301–369.

    MathSciNet  MATH  Google Scholar 

  • Eubank, R.L. (1988), Spline Smoothing and Nonparametric Regression, Dekker.

  • Eubank, R.L. \; Speckman, P. (1991), ‘Convergence rates for trigonometric and polynomial-trigonometric regression estimators’. Statistics \; Probability Letters11, 119–124.

    Article  MathSciNet  Google Scholar 

  • Härdle, W. (1990), Applied Nonparametric Regression, Cambridge University Press.

  • Härdle, W., Kerkyacharian, G., Picard, D. \; Tsybakov, A. (1998), Wavelets, Approximation, and Statistical Applications, Springer Verlag, New York.

    Book  Google Scholar 

  • Härdle, W. \; Scott, D.W. (1992), ‘Smoothing by weighted averaging of rounded points’, Computational Statistics7, 97–128.

    MathSciNet  MATH  Google Scholar 

  • The Math Works, Inc. (1998), MATLAB The Language of Technical Computing: MATLAB 5.2 New Features, Natick.

  • Meyer, Y. (1990), Ondelettes, Hermann.

  • Meyer, Y. (1991), ‘Ondelettes sur l’intervalle’, Revista Matematica Ibero-americana7, 115–133.

    Article  MathSciNet  Google Scholar 

  • Nason, G.P. (1996), ‘Wavelet Shrinkage using Cross-Validation’, Journal of the Royal Statistical Society, Series B 58, No. 2, 463–479.

    MathSciNet  MATH  Google Scholar 

  • Nason, G.P. \; Silverman, B.W. (1994), ‘The discrete wavelet transform in S’, Journal of Computational and Graphical Statistics3, 163–191.

    Google Scholar 

  • Newey, W. (1997), ‘Convergence rates and asymptotic normality for series estimators’, Journal of Econometrics79, 147–168.

    Article  MathSciNet  Google Scholar 

  • Sansone, G. (1959), Orthogonal Functions, Interscience Publishers, Inc., New York.

    MATH  Google Scholar 

  • Szegö G. (1939), Orthogonal Polynomials, American Mathematical Society, New York.

    MATH  Google Scholar 

  • Wand, M.P. \; Jones, M.C. (1995), Kernel Smoothing, Chapman \; Hall.

Download references

Acknowledgments

The authors wish to thank two anonymous referees whose useful comments and suggestions helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Delecroix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delecroix, M., Protopopescu, C. Are Regression Series Estimators Efficient in Practice? A Computational Comparison Study. Computational Statistics 15, 511–529 (2000). https://doi.org/10.1007/s001800000045

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001800000045

Keywords