Skip to main content
Log in

Diffusion and growth in an evolving network

  • Original Article
  • Published:
International Journal of Game Theory Aims and scope Submit manuscript

Abstract

We study a simple model of a population of agents whose interaction network co-evolves with knowledge diffusion and accumulation. Diffusion takes place along the current network and, reciprocally, network formation depends on the knowledge profile. Diffusion makes neighboring agents tend to display similar knowledge levels. On the other hand, similarity in knowledge favors network formation. The cumulative nonlinear effects induced by this interplay produce sharp transitions, equilibrium co-existence, and hysteresis, which sheds some light on why multiplicity of outcomes and segmentation in performance may persist resiliently over time in knowledge-based processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovitz M (1986). Catching up, forging ahead, and falling behind. J Econ Hist 46:386–406

    Google Scholar 

  • Albert R, Barabási A-L (2002). Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Article  Google Scholar 

  • Barabási A-L, Albert R (1999). Emergence of scaling in random networks. Science 286:509–512

    Article  Google Scholar 

  • Barro R, Sala-i-Martin X (1992). Convergence. J Polit Econ 100:223–251

    Article  Google Scholar 

  • Baumol WJ (1986). Productivity, convergence, and welfare: what the long-run data show. Am Econ Rev 76:1072–1085

    Google Scholar 

  • DeMarzo P, Vayanos D, Zwiebel J (2003). Persuasion bias, social influence, and unidimensional opinions. Q J Econ 118:909–968

    Article  Google Scholar 

  • Dorogovtsev SN, Goltsev AV, Mendes JF, Samukhin AN (2003). Spectra of complex networks. Phys Rev E 68:046109

    Article  Google Scholar 

  • Durlauf S (2003). The convergence hypothesis after 10 years. Research Paper 2003-06. University of Wisconsin, Madison

  • Durlauf S, Johnson P (2005). Multiple regimes and cross-country growth behavior. J Appl Econom 10:363–384

    Google Scholar 

  • Ellison G (1983). Learning, local interaction and coordination. Econometrica 61:1047–1071

    Article  Google Scholar 

  • Eshel I, Samuelson L, Shaked A (1998). Altruists, egoists, and hooligans in a local interaction model. Am Econ Rev 88:157–179

    Google Scholar 

  • Fagerberg J (1994). Technology differences in growth rates. J Econ Lit 32:1147–1175

    Google Scholar 

  • Galambos J (1987). The asymptotic theory of extreme order statistics, 2nd edn. Krieger, Melbourne

    Google Scholar 

  • Galor O (1996). Convergence? Inferences from theoretical models. Econ J 106:1056–1069

    Article  Google Scholar 

  • Goyal S, van der Leij M, Moraga-Gonzá lez JL (2003)‘Economics: an emerging small world? Working Paper, University of Essex and Erasmus University

  • Goyal S, Vega-Redondo F (2005). Network formation and social coordination. Games Econ Behav 50:178–207

    Article  Google Scholar 

  • Grossman J (2002). The evolution of the mathematical research collaboration graph. Congressus Numerantium 158:201–212

    Google Scholar 

  • Halpin-Healy T, Zhang Y-C (1995). Kinetic Roughening, stochastic growth, directed polymers & all that. Phys Rep 254:215–415

    Article  Google Scholar 

  • Jackson MO, Watts A (2002). On the formation of interaction networks in social coordination games. Games Econ Behav 41:265–291

    Article  Google Scholar 

  • Jackson M (2005). A survey of network formation models: stability and efficiency. In: Demange G, Wooders M (eds). Group formation in economics: networks, clubs, and coalitions. Cambridge University Press, Cambridge

    Google Scholar 

  • Quah DT (1996). Twin peaks: growth and convergence in models of distribution dynamics. Econ J 106:1045–1055

    Article  Google Scholar 

  • Quah DT (1997). Empirics of growth and distribution: stratification, polarisation, and convergence clubs. J Econ Growth 2:27–59

    Article  Google Scholar 

  • Marsili M, Vega-Redondo F, Slanina F (2004). The rise and fall of a networked society: a formal model. Proc Nat Acad Sci USA 101:1439–1442

    Article  Google Scholar 

  • Mankiw NG, Rimer D, Weill D (1992). A contribution to the empirics of economic growth. Q J Econ 107:407–437

    Article  Google Scholar 

  • Newman MEJ (2001). The structure of scientific collaboration networks. Proc Nat Acad Sci USA 98:404–409

    Article  Google Scholar 

  • Newman MEJ (2003). The structure and function of complex networks. SIAM Rev 45:167–256

    Article  Google Scholar 

  • Vega-Redondo F (1997). The evolution of Walrasian behavior. Econometrica 65:375–384

    Article  Google Scholar 

  • Verspagen B (1991). A new empirical approach to catching up or falling behind. Struct Change Econ Dyn 2:359–380

    Article  Google Scholar 

  • Weisbuch G, Deffuant G, Amblard F, Nadal J-P (2002). Meet, discuss and segregate! Complexity 7:55–63

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Vega-Redondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrhardt, G., Marsili, M. & Vega-Redondo, F. Diffusion and growth in an evolving network. Int J Game Theory 34, 383–397 (2006). https://doi.org/10.1007/s00182-006-0025-6

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00182-006-0025-6

Keywords

JEL Classification Numbers

Navigation