Skip to main content
Log in

Ranking asymmetric auctions

  • Published:
International Journal of Game Theory Aims and scope Submit manuscript

Abstract

We compare the expected revenue in first- and second-price auctions with asymmetric bidders. We consider “close to uniform” distributions with identical supports and show that in the case of identical supports the expected revenue in second-price auctions may exceed that in first-price auctions. We also show that asymmetry over lower valuations has a stronger negative impact on the expected revenue in first-price auctions than in second-price auctions. However, asymmetry over high valuations always increases the revenue in first-price auctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The assumptions are: bidders are risk neutral, identical distributions over values (symmetry), anonymity of auction rules with respect to bidders and allocation of the prize to the bidder with the highest bid.

  2. A recent study by Fibich et al. (2012) proves that this result holds under the assumptions of interchangeability and differentiability for any asymmetric model, not necessarily auctions or even economic models.

  3. Further discussion about Maskin and Riley’s (2000a) arguments can be found in Gayle and Richard (2008).

  4. \( v_{i}(b)\) exists because the equilibrium bid function \(b_{i}(v)\) exists, is unique, and is increasing monotonically (see Maskin and Riley (2000b, 2003) and Lebrun (2006) for existence, uniqueness and monotonicity).

  5. For the numerical simulations we used both Matlab and Maple to verify our calculations. The errors in the numerical calculations shown in the current study are less than the least significant digit we present. In other words, if \(\Delta R=-0.00045\), the error is \(10^{-6}\) or less. Further discussion can be found in Fibich and Gavious (2003) and Fibich and Gavish (2012). A Matlab code by Fibich and Gavish (2012) for solving first-price auctions with two bidders can be found in http://www.math.tau.ac.il/~fibich/publications.html#_Matlab_codes_for.

  6. As we noted earlier, although the difference is in the sixth digit, the simulation error is less than \(10^{-7}\).

  7. By Lebrun (2009), this assumption is satisfied up to order \(\varepsilon \). Fibich and Gavish (2012) proved (see Theorem 3.6) that when distributions have the structure \(v^{a+\varepsilon h}\), equilibrium bid functions are smooth with respect to \(\varepsilon \). In other words, expansion exists for all orders of \(\varepsilon \).

  8. Cheng (2011) considers a first-price auction with two bidders and a discrete probability distribution, and finds that \(R_{sym}<R^{first}\) where the symmetric benchmark is the geometric average.

  9. A recent study by Hubbard et al. (2012) shows a similar result numerically for two bidders, one with uniform distributions and the second with polynomial distributions.

  10. The expansion of \(z(w)\) and \(z^{\prime }(w)\) at \(w=0\) gives \(z(w)=z^{\prime }(0)w+O\left( w^{2}\right) \) and \(z^{\prime }(w)=z^{\prime }(0)+O\left( w\right) \).

  11. The second-order condition for optimality is not satisfied for the problem \( \min _{z(w)}\Delta R\), which indicates that there is no minimum.

References

  • Cantillon E (2008) The effect of bidders’ asymmetries on expected revenue in auctions. Games Econ Behav 62:1–25

    Article  Google Scholar 

  • Cheng H (2006) Ranking sealed high-bid and open asymmetric auctions. J Math Econ 42:471–498

    Article  Google Scholar 

  • Cheng H (2011) Asymmetry and revenue in first-price auctions. Econ Lett 111:78–80

    Article  Google Scholar 

  • Fibich G, Gavious A (2003) Asymmetric first-price auctions—a perturbation approach. Math Oper Res 28:836–852

    Article  Google Scholar 

  • Fibich G, Gavious A (2010) Asymptotic revenue equivalence of asymmetric auctions with interdependent values. Eur J Oper Res 206:496–507

    Article  Google Scholar 

  • Fibich G, Gavious A, Sela A (2004) Revenue equivalence in asymmetric auctions. J Econ Theory 115:309–321

    Article  Google Scholar 

  • Fibich G, Gavious A, Solan E (2012) An averaging principle for second-order approximation of heterogeneous models with homogeneous models. Proc Natl Acad Sci USA 109(48):19545–19550

    Article  Google Scholar 

  • Fibich G, Gavish N (2012) Asymmetric first-price auctions: a dynamical-systems approach. Math Oper Res 37(2):219–243

    Article  Google Scholar 

  • Gavious A, Minchuk M (2012) The effect of asymmetry on revenue in second-price auctions. Int Game Theory Rev 14(3):1–8

    Google Scholar 

  • Gayle WR, Richard JF (2008) Numerical solutions of asymmetric, first-price, independent private values auctions. Comput Econ 32:245–278

    Article  Google Scholar 

  • Hubbard TP, Kirkegaard R, Paarsch HJ (2012) Using economic theory to guide numerical analysis: solving for equilibria in models of asymmetric first-price auctions. Comput Econ. doi:10.1007/s10614-012-9333-z

  • Kaplan T, Zamilr S (2012) Asymmetric first-price auctions with uniform distributions: analytic solutions to the general case. Econ Theory 50(2):269–302

    Article  Google Scholar 

  • Kirkegaard R (2009) Asymmetric first-price auctions. J Econ Theory 144:1617–1635

    Article  Google Scholar 

  • Kirkegaard R (2012) A mechanism design approach to ranking asymmetric auctions. Econometrica 80:2349–2364

    Article  Google Scholar 

  • Klemperer P (1999) Auction theory: a guide to the literature. J Econ Surv 13:227–286

    Article  Google Scholar 

  • Lebrun B (1996) Revenue Comparison Between the First and Second Price Auctions in A Class of Asymmetric Examples. Mimo (unpublished paper)

  • Lebrun B (2006) Uniqueness of the equilibrium in first-price auctions. Games Econ Behav 55:131–151

    Article  Google Scholar 

  • Lebrun B (2009) Auctions with almost homogeneous bidders. J Econ Theory 144:1341–1351

    Article  Google Scholar 

  • Li H, Riely J (2007) Auction choice. Int J Ind Organ 25:1269–1298

    Article  Google Scholar 

  • Marshall RC, Meurer MJ, Richard J-F, Stromquist W (1994) Numerical analysis of asymmetric first price auctions. Games Econ Behav 7:193–220

    Article  Google Scholar 

  • Maskin E, Riley J (2000a) Asymmetric auctions. Rev Econ Stud 67:413–438

    Article  Google Scholar 

  • Maskin E, Riley J (2000b) Equilibrium in sealed high bid auctions. Rev Econ Stud 67:439–454

    Article  Google Scholar 

  • Maskin E, Riley J (2003) Uniqueness of equilibrium in sealed high-bid auctions. Games Econ Behav 45:395–409

    Article  Google Scholar 

  • Myerson RB (1981) Optimal auction design. Math Oper Res 6:58–73

    Article  Google Scholar 

  • Plum M (1992) Characterization and computation of Nash-equilibria for auctions with incomplete information. Int J Game Theory 20(4):393–418

    Article  Google Scholar 

  • Riley JG, Samuelson WF (1981) Optimal auctions. Am Econ Rev 71:381–392

    Google Scholar 

  • Vickrey W (1961) Counterspeculation, auctions, and competitive sealed tenders. J Finance 16:8–37

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arieh Gavious.

Appendix

Appendix

1.1 A: Auxiliary Lemma

Lemma 2

$$\begin{aligned} F_{i}(v_{i}(b))&= 2b+\varepsilon (V_{i}(b)+H_{i}(2b)+\varepsilon ^{2}(V_{i}(b)H_{i}^{\prime }(2b)+u_{i}(b))+O(\varepsilon ^{3}).\end{aligned}$$
(23)
$$\begin{aligned} f_{i}(v_{i}(b))&= 1+\varepsilon H_{i}^{\prime }(2b)+\varepsilon ^{2}V_{i}(b)H_{i}^{\prime \prime }(2b)+O(\varepsilon ^{3}). \end{aligned}$$
(24)

Proof

Substituting \(v_{i}(b)=v_{sym}(b)+\varepsilon V_{i}(b)+\varepsilon ^{2}U_{i}(b)+O(\varepsilon ^{3})\) in \(F_{i}(v_{i}(b))\), expanding the series near \(v_{sym}(b)\) and collecting the terms in \( \varepsilon \) gives

$$\begin{aligned} F_{i}(v_{i}(b))&= v_{i}(b)+\varepsilon H_{i}(v_{i}(b))=\left[ v_{sym}(b)+\varepsilon V_{i}(b)+\varepsilon ^{2}u_{i}(b)+O(\varepsilon ^{3}) \right] \\&\quad +\varepsilon H_{i}\left( (v_{sym}(b)+\varepsilon V_{i}(b)+\varepsilon ^{2}u_{i}(b)+O(\varepsilon ^{3})\right) \\&= v_{sym}(b)+\varepsilon \left[ V_{i}(b)+H_{i}(v_{sym}(b))\right] \\&\quad +\varepsilon ^{2}\left[ V_{i}(b)H_{i}^{\prime }(v_{sym}(b))+u_{i}(b)\right] +O(\varepsilon ^{3}), \end{aligned}$$

where \(\varepsilon H_{i}((v_{sym}(b)+\varepsilon V_{i}(b)+\varepsilon ^{2}u_{i}(b)+O(\varepsilon ^{3}))=\varepsilon H_{i}(v_{sym}(b))+\varepsilon ^{2}V_{i}(b)H_{i}^{\prime }(v_{sym}\) \((b))+O(\varepsilon ^{3})\). Substituting \( v_{sym}(b)=2b\) (14) completes the proof. A similar calculation proves (24).\(\square \)

1.2 B: Proof of Theorem 1

The following notations are used later on in this proof. Let

$$\begin{aligned} V(b)={y(b)-H(2b)}, \end{aligned}$$
(25)

where \(V(b)\) is given by (16) and

$$\begin{aligned} y{{(b)}=}16b^{3}\int \limits _{2b}^{1}\frac{{H(x)}}{x^{4}}dx. \end{aligned}$$
(26)

Substituting (12, 14, 23) in \(R^{first}\) (given by 3) we get

$$\begin{aligned} R^{first}&= \overline{b}-\int \limits _{0}^{\overline{b}}4b^{2}+\varepsilon ^{2}\left[ 2b(V(b)H^{\prime }(2b)+u_{1}(b))-(V(b)+H(2b))^{2}\right] \\&+\,\,\varepsilon ^{2}\left[ 2b(u_{2}(b)+V(b)H^{\prime }(2b))\right] db+O(\varepsilon ^{3}) \\&= \overline{b}-\int \limits _{0}^{\overline{b}}4b^{2}-\varepsilon ^{2}\int \limits _{0}^{\overline{b}_{sym}+\varepsilon ^{2}\overline{b}_{2}}\left[ 2b(V(b)H^{\prime }(2b)+u_{1}(b))-(V(b)+H(2b))^{2}\right] \\&+\,\left[ 2b(u_{2}(b)+V(b)H^{\prime }(2b))\right] db+O(\varepsilon ^{3}) \end{aligned}$$

(Observe that we substitute \(\overline{b}=\overline{b}_{sym}+\varepsilon ^{2} \overline{b}_{2}+O(\varepsilon ^{3})\) only in the second integral’s upper limit where the missing \(O(\varepsilon ^{3})\) in the integral’s limit is part of the \(O(\varepsilon ^{3})\) at the end of the equation). Substituting \(\overline{b}-\int \nolimits _{0}^{\overline{b} }4b^{2}db=R_{sym}^{first}+O(\varepsilon ^{3})\) given by Lemma 3 below, \(\overline{b}_{sym}=0.5\) (see Eq. 4) gives (Observe that the terms with the \(\overline{b}_{2}\) are \(O(\varepsilon ^{3})\) )

$$\begin{aligned} R^{first}&= R_{sym}^{first}-\varepsilon ^{2}\int \limits _{0}^{0.5}{\huge [} 2b(V(b)H^{\prime }(2b)+u_{1}(b))-(V(b)+H(2b))^{2} \\&+2b(u_{2}(b)+V(b)H^{\prime }(2b))){\huge ]}db+O(\varepsilon ^{3}) \end{aligned}$$

Denote \(u(b)=u_{1}(b)+u_{2}(b)\). Rearranging yields

$$\begin{aligned} R^{first}&= R_{sym}^{first}-\varepsilon ^{2}\int \limits _{0}^{0.5}{ 2b[u(b))+2V(b)H^{\prime }(2b)]db} \\&+\,\varepsilon ^{2}\int \limits _{0}^{0.5}{(V(b)+H(2b))}^{2}{db+} O(\varepsilon ^{3}). \end{aligned}$$

Substituting \(2\displaystyle \int \nolimits _{0}^{0.5}{bu(b)db}\) given by Lemma 5 below gives

$$\begin{aligned} R^{first}&= R_{sym}^{first}-\varepsilon ^{2}\int \limits _{0}^{0.5}(1-2b) \left[ \frac{{2H(2b)V(b)+6V^{2}(b)}}{{b}}+4{H^{\prime }(2b)V(b)}\right] {db} \nonumber \\&+\,\varepsilon ^{2}\int \limits _{0}^{0.5}{(V(b)+H(2b))}^{2}{db+} O(\varepsilon ^{3}). \end{aligned}$$
(27)

Substituting \(V(b)\) given by ( 25) in (27) we get

$$\begin{aligned} R^{first}&= R_{sym}^{first}-\varepsilon ^{2}\left\{ \int \limits _{0}^{0.5}(1-2b)\left[ \frac{{6y^{2}{{(b)}-10H(2b)}}y{{(b)+4}H^{2}(2b)}}{{b} }\right] db\right. \nonumber \\&\quad \left. -{\int \limits _{0}^{0.5}}(1-2b)[4{H^{\prime }(2b)y(b)}-4{H^{\prime }(2b){H(2b)]}}-{y^{2}{(b)db}}\right\} {+O(}\varepsilon ^{3}), \nonumber \\ \end{aligned}$$
(28)

where \(y(b)\) is given by (26). Observe that

$$\begin{aligned} \int \limits _{0}^{0.5}{b{H(2b)}H^{\prime }(2b)db=-}\frac{1}{4}\int \limits _{0}^{0.5}{H}^{2}{(2b)db} \end{aligned}$$
(29)

and

$$\begin{aligned} \int \limits _{0}^{0.5}{{H(2b)}H^{\prime }(2b)db=0.} \end{aligned}$$
(30)

Substituting (29, 30) in (28) gives

$$\begin{aligned} R^{first}&= R_{sym}^{first}-\varepsilon ^{2}\left\{ \int \limits _{0}^{0.5}(1-2b) \left[ \frac{{6y^{2}{{(b)}-10H(2b)}}y{{(b)+4}H^{2}(2b)}}{{b} }\right] {db}\right. \nonumber \\&\quad \left. -{\int \limits _{0}^{0.5}(1-2b)4{H^{\prime }(2b)y(b)} -2H^{2}(2b)-y^{2}{(b)db}}\right\} {+O(}\varepsilon ^{3}). \end{aligned}$$
(31)

Integration by parts of \(\int \nolimits _{0}^{0.5}(1-2b){H^{\prime }(2b)y(b)db}\) gives

$$\begin{aligned} \int \limits _{0}^{0.5}(1-2b){H^{\prime }(2b)y(b)db}=-\int \limits _{0}^{0.5} \frac{{H(2b)((1-2b)y}^{\prime }{(b)}-2y{(b))}}{2}db. \end{aligned}$$
(32)

Substituting (32) in (31) yields

$$\begin{aligned} R^{first}&= R_{sym}^{first}-\varepsilon ^{2}\left\{ \int \limits _{0}^{0.5}(1\!-\!2b)\left[ \frac{{6y^{2}{{(b)}\!-\!10H(2b)}}y{{(b)\!+\!4}H^{2}(2b) }}{{b}}\right] {db}\right. \nonumber \\&\left. -{\int \limits _{0}^{0.5}\!-\!{2H(2b)((1\!-\!2b){y}^{\prime }(b)\!-\!2y(b))-} 2H^{2}(2b)\!-\!y^{2}{(b)db}}\right\} {+O(}\varepsilon ^{3}). \nonumber \\ \end{aligned}$$
(33)

Simple calculation shows that

$$\begin{aligned} {y}^{\prime }{(b)=}48b^{2}\int \limits _{2b}^{1}\frac{{H(x)}}{x^{4}}dx- \frac{2{H(2b)}}{b}={\frac{3y{(b)-2H(2b)}}{b}} \end{aligned}$$
(34)

and thus

$$\begin{aligned} {H(2b)}=\frac{3y{(b)-{y}^{\prime }(b)b}}{2}. \end{aligned}$$
(35)

Substituting (34) and (35) in (33) we get

$$\begin{aligned} R^{first}&= R_{sym}^{first}-\varepsilon ^{2}\left\{ \int \limits _{0}^{0.5}(1-2b)(-y{{{{{(b)y}^{\prime }(b)+}}}}\left( {{y}^{\prime }(b)}\right) ^{2}{b}){)db}\right. \nonumber \\&\qquad \qquad \qquad -{\int \limits _{0}^{0.5}-(3y{(b)}-{y}^{\prime }(b)b)\cdot {((1-2b){y }^{\prime }(b)-2y(b))}}\nonumber \\&\qquad \qquad \qquad \left. -\frac{{{(}3y{(b)-{y}^{\prime }(b)b)}^{2}}}{2}{-y^{2}{ (b)db}}\right\} {+O(}\varepsilon ^{3}). \end{aligned}$$
(36)

By integration by parts (observe that \(y(1)=0\)) we have

$$\begin{aligned} \int \limits _{0}^{0.5}{{b{y}^{\prime }{(b)}}}y{(b)=-}\int \limits _{0}^{0.5} \frac{{y^{2}{(b)}}}{2}db \end{aligned}$$
(37)

and

$$\begin{aligned} \int \limits _{0}^{0.5}{y}^{\prime }{(b)}y{(b)=0.} \end{aligned}$$
(38)

Substituting (37) and (38) in (36) gives

$$\begin{aligned} R^{first}=R_{sym}^{first}+\varepsilon ^{2}\left\{ \int \limits _{0}^{0.5}{ 4y^{2}{(b)}}-\left( 2b-\frac{{9}}{2}{b}^{2}\right) \left( {y}^{\prime }{(b)}\right) ^{2}{ db}\right\} {+O(}\varepsilon ^{3}). \end{aligned}$$

Transformation of \(w=2b\) and substituting \(z(w)=y(w/2)\) given by (19 ) yields the result. \(\square \)

Lemma 3

\(\overline{b}-\int \nolimits _{0}^{\overline{b} }4b^{2}db=R_{sym}^{first}+O(\varepsilon ^{3}).\)

Proof

Since \(\bar{b}_{1}=0\) and \(\overline{b}_{sym}=0.5\) we have \( \overline{b}=\overline{b}_{sym}+\varepsilon \bar{b}_{1}+\varepsilon ^{2} \overline{b}_{2}+O(\varepsilon ^{3})=0.5+\varepsilon ^{2}\overline{b} _{2}+O(\varepsilon ^{3})\). Thus,

$$\begin{aligned} \overline{b}-\int \limits _{0}^{\overline{b}}4b^{2}db&= \overline{b}-\frac{4 }{3}\overline{b}^{3}=\frac{1}{2}+\varepsilon ^{2}\overline{b}_{2}-\frac{4}{3} \left( \frac{1}{2}+\varepsilon ^{2}\overline{b}_{2}\right) ^{3}+O(\varepsilon ^{3}) \nonumber \\&= \frac{1}{3}+O(\varepsilon ^{3})=R_{sym}^{first}+O(\varepsilon ^{3}). \end{aligned}$$
(39)

\(\square \)

Lemma 4

$$\begin{aligned} u(b)&= \frac{1}{b}\left\{ \int \limits _{0}^{b}\frac{{2H(2s)V(s)+6V^{2}(s)} }{{s}}-{4H^{\prime }(2s)V(s)-2H(2s)H^{\prime }(2s)ds}\right. \nonumber \\&\qquad \qquad \left. +\int \limits _{0}^{b}4s\left( H^{\prime }({2s})\right) ^{2}-{ 4sV(s)H^{\prime \prime }(2s)ds}\right\} , \end{aligned}$$
(40)

where \(u(b)=u_{1}(b)+u_{2}(b).\)

Proof

The equilibrium equations are given by

$$\begin{aligned} v_{i}^{\prime }(b)=\frac{{F_{i}(v_{i}(b))}}{{f_{i}(v_{i}(b))}}\frac{1}{{ v_{j}(b)-b}},\quad i\ne j. \end{aligned}$$
(41)

Substituting (13, 24, 23), \(v_{sym}(b)=2b\) and \(v_{i}^{\prime }(b)\) (obtained by differentiating 13) in (41) we get

$$\begin{aligned}&v_{sym}^{^{\prime }}(b)+\varepsilon V_{i}^{^{\prime }}(b)+\varepsilon ^{2}u_{i}^{^{\prime }}(b)+O(\varepsilon ^{3}) \nonumber \\&= \frac{2b+\varepsilon \left[ V_{i}(b)+H_{i}(2b)\right] +\varepsilon ^{2} \left[ V_{i}(b)H_{i}^{\prime }({2b})+u_{i}(b)\right] }{{1+\varepsilon H_{i}^{\prime }(2b)+\varepsilon ^{2}V_{i}(b)H_{i}^{\prime \prime }(2b)+O(\varepsilon ^{3})}} \nonumber \\&\quad \times \frac{1}{{2b}+\varepsilon V_{j}(b)+\varepsilon ^{2}u_{j}(b){-b}} +O(\varepsilon ^{3}),\quad i\ne j. \end{aligned}$$
(42)

To simplify the calculation we define

$$\begin{aligned} A&= \frac{2b+\varepsilon \left[ V_{i}(b)+H_{i}(2b)\right] +\varepsilon ^{2} \left[ V_{i}(b)H_{i}^{\prime }(2b)+u_{i}(b)\right] }{{1+\varepsilon H_{i}^{\prime }(2b)+\varepsilon ^{2}V_{i}(b)H_{i}^{\prime \prime }(2b)+O(\varepsilon ^{3})}}+O(\varepsilon ^{3}); \\ B&= \frac{1}{b+\varepsilon V_{j}(b)+\varepsilon ^{2}u_{j}(b)}+O(\varepsilon ^{3}) \end{aligned}$$

when \(\varepsilon \) is sufficiently small, \(\varepsilon H_{i}^{\prime }(2b)+\varepsilon ^{2}V_{i}(b)H_{i}^{\prime \prime }(2b)<1\). Then, we can use Taylor’s expansion \(\frac{1}{1+\varepsilon C}=1-\varepsilon C+(\varepsilon C)^{2}+O(\varepsilon ^{3})\) in \(A\) and \(B\) above. The expansion for A is given by

$$\begin{aligned} A&= \left[ 2b+\varepsilon \left[ V_{i}(b)+H_{i}(2b)\right] +\varepsilon ^{2} \left[ V_{i}(b)H_{i}^{\prime }(2b)+u_{i}(b)\right] \right] \\&\times \left[ 1-\varepsilon H_{i}^{\prime }(2b)-\varepsilon ^{2}V_{i}(b)H_{i}^{\prime \prime }(2b)+{\varepsilon ^{2}}H_{i}^{\prime }{}^{2}(2b)\right] +O(\varepsilon ^{3}). \end{aligned}$$

Rearranging gives

$$\begin{aligned} A&= 2b+\varepsilon \left[ V_{i}(b)+H_{i}(2b)-2bH_{i}^{\prime }(2b)\right] \\&\quad +\varepsilon ^{2}\left[ 2bH_{i}^{\prime }{}^{2}(2b) -2bV_{i}(b)H_{i}^{\prime \prime }(2b)-V_{i}(b)H_{i}^{\prime }(2b)\right. \\&\quad \left. -H_{i}(2b)H_{i}^{\prime }(2b)+u_{i}(b)+V_{i}(b)H_{i}^{\prime }(2b) \right] +O(\varepsilon ^{3}). \end{aligned}$$

Since \(0\le {\frac{{\varepsilon V_{j}(b)+\varepsilon ^{2}u_{j}(b)}}{{b}}<<1} \) for small \(\varepsilon \) ( it easy to see that \(\frac{{ V_{j}(b)}}{{b}}\) is bounded for small \(b\) ), the Taylor expansion of B is given by

$$\begin{aligned} B&= \frac{1}{{b+\varepsilon V_{j}(b)+\varepsilon ^{2}u_{j}(b)}}=\frac{1}{{b} }\frac{1}{{1+\frac{{\varepsilon V_{j}(b)+\varepsilon ^{2}u_{j}(b)}}{{b}}}}\\&= \frac{1}{{b}}\left[ 1-\frac{{\varepsilon V_{j}(b)}}{{b}}+{\varepsilon ^{2} }\left( -\frac{{u_{j}(b)}}{{b}}+\frac{1}{{b^{2}}}(V_{j}(b)^{2}\right) \right] +O(\varepsilon ^{3}). \end{aligned}$$

Multiplying A and B we get

$$\begin{aligned} A\times B&= 2\left[ 1-\frac{{\varepsilon V_{j}(b)}}{{b}}+{\varepsilon ^{2}}\left( - \frac{{u_{j}(b)}}{{b}}+\frac{1}{{b^{2}}}(V_{j}(b)^{2}\right) \right] \\&\quad +\,\frac{\varepsilon \left[ V_{i}(b)+H_{i}(2b)-2bH_{i}^{\prime }(2b)\right] }{ {b}}\times \left( 1-\frac{{\varepsilon V_{j}(b)}}{{b}}\right) \\&\quad +\,\varepsilon ^{2}\frac{2bH_{i}^{\prime }{}^{2}(2b)-2bV_{i}(b)H_{i}^{\prime \prime }(2b)-H_{i}(2b)H_{i}^{\prime }(2b)+u_{i}(b)}{{b}}+O(\varepsilon ^{3}). \end{aligned}$$

Rearranging (42), comparing the \(O\left( \varepsilon ^{2}\right) \) order coefficient (\(O(1)\) and \(O(\varepsilon )\) are known as shown in Sect. 3) and substituting \(V_{1}=-V_{2}\) (15) we get

$$\begin{aligned} u_{i}^{^{\prime }}(b)&= -\left( \frac{2{u_{j}(b)}}{{b}}\right) -\left( \frac{{2H^{\prime }(2b)V(b)}}{{b}}\right) -2{V(b)H^{\prime \prime }(2b)} \\&+2H^{\prime }{}^{2}({2b})+\frac{{V}^{2}{(b)}}{{b^{2}}}+\frac{{u_{i}(b)}}{{b }} \\&+\frac{{H(2b)V(b)}}{{b^{2}}}-\frac{{H(2b)H^{\prime }(2b)}}{{b}}+\frac{2{V} ^{2}{(b)}}{{b^{2}}}. \end{aligned}$$

Let \(u(b)=u_{1}(b)+u_{2}(b)\). Then

$$\begin{aligned} u^{\prime }+\frac{{u(b)}}{b}&= \frac{{2H(2b)V(b)+6V^{2}(b)}}{{b^{2}}}-\frac{ {4H^{\prime }(2b)V(b)+2H(2b)H^{\prime }(2b)}}{b} \\&\quad +4H^{\prime 2}({2b})-{4V(b)H^{\prime \prime }(2b).} \nonumber \end{aligned}$$
(43)

Equation (43) is a first order ODE, \(u^{\prime }+P(b)u=g(b)\). By (2) the boundary condition is \(u(0)=0\). The solution of (43) is given by :

$$\begin{aligned} u(b)=\left( m-\int \limits _{b}^{0.5}{g(s)\cdot e}^{{-\int \nolimits _{s}^{0.5}{P(x)dx}}}{ds}\right) \cdot {{e}^{{\int \nolimits _{b}^{0.5}{ P(s)ds}}},} \end{aligned}$$

where \({P(s)=}\frac{1}{s}\) ,

$$\begin{aligned} g(s)&= \frac{{2H(2b)V(b)+6V^{2}(b)}}{{b^{2}}}-\frac{{4H^{\prime }(2b)V(b)+2H(2b)H^{\prime }(2b)}}{b} \\&\quad +4H^{\prime 2}({2b})-{4V(b)H^{\prime \prime }(2b).} \nonumber \end{aligned}$$
(44)

and \(m\) is a constant. Since

$$\begin{aligned} {\exp }\left( \int \limits _{b}^{0.5}{P(s)ds}\right) {=}\frac{1}{2b}. \end{aligned}$$

we have

$$\begin{aligned} u(b)=\frac{m}{2b}-\frac{1}{b}\int \limits _{b}^{0.5}{g(s)s{ds.}} \end{aligned}$$

By the boundary conditions \(u(0)=0\) it follows that

$$\begin{aligned} m=2\int \limits _{0}^{0.5}{g(s)s{ds.}} \end{aligned}$$

Substituting \(m\) in \(u\) gives

$$\begin{aligned} u(b)=\frac{1}{b}\int \limits _{0}^{b}{g(s)s{ds.}} \end{aligned}$$
(45)

Substituting (44) in (45) yields the result. \(\square \)

Lemma 5

$$\begin{aligned} 2\int _{0}^{0.5}bu(b)&= \int \limits _{0}^{0.5}\left( \int \limits _{0}^{b}{ g(s)s{ds}}\right) db \\&= \int \limits _{0}^{0.5}\left\{ (1-2b)\left[ \frac{{2H(2b)V(b)+6V^{2}(b)}}{ {b}}+4{H^{\prime }(2b)V(b)}\right] \right. \\&\quad \left. -4b{V(b)H^{\prime }(2b)db}\right\} \end{aligned}$$

Proof

Let us find \(\int _{0}^{0.5}2bu(b)db\) where \(u(b)\) is given by Lemma 4.

$$\begin{aligned} \int _{0}^{0.5}bu(b)db&= \int _{0}^{0.5}\left[ \int \limits _{0}^{b}\Big (\frac{{ 2H(2s)V(s)+6V^{2}(s)}}{{s}}-{4H^{\prime }(2s)V(s)-2H(2s)H^{\prime }(2s)} \right. \\&\quad \left. +4sH^{\prime 2}({2s})-{4sV(s)H^{\prime \prime }(2s)\Big )ds}\right] {db.} \end{aligned}$$

Integrating by parts, multiplying by 2 and using the boundary condition \( u(0)=0\) we get

$$\begin{aligned} 2\int _{0}^{0.5}bu(b)&= \int \limits _{0}^{0.5}(1-2b)g(b)bdb \\&= \int \limits _{0}^{0.5}(1-2b)\left[ \frac{{2H(2b)V(b)+6V^{2}(b)}}{{b}}\!-\!{ 4H^{\prime }(2b)V(b)\!-\!2H(2b)H^{\prime }(2b)}\right. \\&\quad \left. +4bH^{\prime 2}({2b})-{4bV(b)H^{\prime \prime }(2b)}\right] {db.} \end{aligned}$$

Since \({V(b)H^{\prime }(2b)}+{2bH^{\prime \prime }(2b)V(b)=V(b)(H}^{\prime }{ (2b)b)}^{\prime }\), we have

$$\begin{aligned} 2\int _{0}^{0.5}bu(b)&= \int \limits _{0}^{0.5}(1-2b)\Bigg [ \frac{{ 2H(2b)V(b)+6V^{2}(b)}}{{b}}-{2H^{\prime }(2b)V(b)}\\&-{2H(2b)H^{\prime }(2b)}+4bH^{\prime 2}({2b})-{2V(b){(H^{\prime }(2b)b)} ^{\prime }{\Bigg ]}db.} \nonumber \end{aligned}$$
(46)

Substituting \(V^{^{\prime }}(b)={\frac{3{V(b)+H(2b)}}{b}}-2{H^{^{\prime }}(2b)}\) (obtained by differentiating \(V(b)\) defined in Eq. 16) and integrating by parts gives

$$\begin{aligned} \int \limits _{0}^{0.5}2(1-2b){V(b){(H^{\prime }(2b)b)}^{\prime }db} \!&= \!\int \limits _{0}^{0.5}4{V(b)H^{\prime }(2b)bdb} -{\int \limits _{0}^{0.5}(1-2b)}(6V(b)H^{\prime }(2b)\nonumber \\&\quad +2H(2b))H^{\prime }(2b) -4H^{\prime 2}(2b)b)db. \end{aligned}$$
(47)

The substitution of (47) in (46) completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavious, A., Minchuk, Y. Ranking asymmetric auctions. Int J Game Theory 43, 369–393 (2014). https://doi.org/10.1007/s00182-013-0383-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00182-013-0383-9

Keywords

JEL Classification

Navigation