Skip to main content
Log in

Randomized stopping games and Markov market games

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

We study nonzero-sum stopping games with randomized stopping strategies. The existence of Nash equilibrium and ɛ-equilibrium strategies are discussed under various assumptions on players random payoffs and utility functions dependent on the observed discrete time Markov process. Then we will present a model of a market game in which randomized stopping times are involved. The model is a mixture of a stochastic game and stopping game.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bobecka K, Ferenstein EZ (2001) On nonzero-sum stopping game related to discrete risk process. Control Cybern 30:339–354

    MATH  Google Scholar 

  • Chow YS, Robbins H, Siegmund D (1971) Great expectations: the theory of optimal stopping. Houghton Mifflin, Boston

    MATH  Google Scholar 

  • Domansky V (2002) Dynkin’s game with randomized optimal stopping rules. Ann Int Soc Dyn Games 7:247–262

    MathSciNet  Google Scholar 

  • Duffie D, Geanakoplos J, Mas-Colell A, McLennan A (1994) Stationary Markov equilibria. Econometrica 62:745–781

    Article  MATH  MathSciNet  Google Scholar 

  • Dynkin EB (1969) Game variant of a problem on optimal stopping. Soviet Math Dokl 10:270–274

    MATH  Google Scholar 

  • Enns EG, Ferenstein EZ (1987) On a multi-person time-sequential game with priorities. Sequential Anal 6:239–256

    Article  MATH  MathSciNet  Google Scholar 

  • Fan K (1966) Applications of a theorem concerning sets with convex sections. Math Annalen 163:189–203

    Article  MATH  Google Scholar 

  • Ferenstein EZ (1992) Two-person non-zero-sum game with priorities. In: Ferguson TS, Samuels SM (ed) Contemporary Mathematics, vol 125, pp 119–133

  • Ferenstein EZ (1993) A variation of the Dynkin’s stopping game. Math Jpn 38:371–379

    MATH  MathSciNet  Google Scholar 

  • Ferenstein EZ (2005) On randomized stopping games. Ann Int Soc Dyn Games 7:223–233

    MathSciNet  Google Scholar 

  • Ferguson TS (1967) Mathematical statistics. A decision theoretic approach. Academic, New York

    MATH  Google Scholar 

  • Irle A (1995) Games of stopping with infinite horizon. ZOR—Math Meth Oper Res 42:345–359

    Article  MATH  MathSciNet  Google Scholar 

  • Karatzas I, Shubik M and Sudderth WD (1994) Construction of stationary Markov equilibria in a strategic market game. Math Oper Res 19:975–1006

    MATH  MathSciNet  Google Scholar 

  • Nash J (1951) Non-cooperative games. Ann Math 54:286–295

    Article  MathSciNet  Google Scholar 

  • Neveu J (1975) Discrete parameter martingales. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Neumann P, Ramsey D, Szajowski K (2002) Randomized stopping times in Dynkin games. ZAMM Z Angew Math Mech 82:811–819

    Article  MATH  MathSciNet  Google Scholar 

  • Nowak AS, Szajowski K (1999) Nonzero-sum stochastic games. Ann Int Soc Dyn Games 4:297–343

    MathSciNet  Google Scholar 

  • Nowak AS, Altman E (1998) ɛ-equilibria for stochastic games with uncountable state space and unbounded costs. Mimeo, Institute of Mathematics, Wrocław University of Technology, Wrocław

  • Nowak AS (2003) On a new class of nonzero-sum discounted stochastic games having stationary Nash equilibrium points. Int J Game Theory 32:121–132

    Article  MATH  Google Scholar 

  • Ohtsubo Y (1987) A nonzero-sum extension of Dynkin’s stopping problem. Math Oper Res 12:277–296

    Article  MATH  MathSciNet  Google Scholar 

  • Ohtsubo Y (1991) On a discrete-time non-zero-sum Dynkin problem with monotonicity. J Appl Probab 28:466–472

    Article  MATH  MathSciNet  Google Scholar 

  • Rosenberg D, Solan E, Vieiile N (2001) Stopping games with randomized strategies. Probab Th Related Fields 119:433–451

    Article  MATH  Google Scholar 

  • Solan E, Vieille N (2001) Quitting games. Math Oper Res 26:265–285

    Article  MATH  MathSciNet  Google Scholar 

  • Yasuda M (1986) On a randomized strategy in Neveu’s stopping problem. Stoch Process Appl 21:159–166

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Z. Ferenstein.

Additional information

Research supported by grant PBZ-KBN-016/P03/99.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferenstein, E.Z. Randomized stopping games and Markov market games. Math Meth Oper Res 66, 531–544 (2007). https://doi.org/10.1007/s00186-006-0143-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-006-0143-8

Keywords

Navigation