Skip to main content
Log in

Präferierte mentale Modelle beim räumlich-relationalen Schließen: Empirie und kognitive Modellierung

Preferred mental models in spatial relational inference: Empirical evidence and cognitive modeling

  • Published:
Kognitionswissenschaft

Summary

The theory of mental models is the most prominent approach for explaining the underlying cognitive processes in spatial relational inference. Of the three phases of model construction, model inspection, and model variation, this article focuses mainly on the first one. The phase of model construction in spatial relational inference tasks based on the interval relations of Allen (1983) is investigated in two experiments. The first experiment corroborated the hypothesis of the existence of generally preferred mental models. The second experiment showed evidence for the causal influence of preferred mental models in verification tasks of three-term series problems. Based on these results, the issue concerning the kind of representation of spatial information in mental models is tackled. Cognitive modeling based on insertion operations for beginning and end-points of intervals by means of a spatial focus, i. e., using only ordinal information, corresponds clearly to the empirical preferences. Finally, we discuss the results with respect to the prediction of inferences in other inference tasks and problems concerning the processes in the phases of model inspection and model variation.

Zusammenfassung

Die Theorie mentaler Modelle ist der derzeit wichtigste Ansatz zur Erklärung der kognitiven Prozesse beim räumlichrelationalen Schließen. Von den in der Theorie unterschiedenen Phasen Modellkonstruktion, -inspektion und -variation beschäftigt sich die vorliegende Arbeit v. a. mit der Phase der Modell-konstruktion, die anhand der Intervallrelationen von Allen (1983) in 2 Experimenten untersucht wurde. Im 1. Experiment ließ sich die Existenz allgemeiner präferierter mentaler Modelle empirisch belegen. Im 2. Experiment konnte deren kausale Wirksamkeit im Rahmen von Verifikationsaufgaben bei Three-term-series-Problemen nachgewiesen werden. Anschließend wird der Frage nach der Art der im mentalen Modell repräsentierten räumlichen Information nachgegangen. Eine kognitive Modellierung, die lediglich auf Einfügeoperationen von Anfangs- und Endpunkten von Intervallen mittels eines räumlichen Fokus basiert, also nur ordinale Information berücksichtigt, weist eine hohe Übereinstimmung mit den empirisch ermittelten Präferenzen auf. Eine Diskussion der bisher gewonnenen Erkenntnisse für die Vorhersage der Performanz in anderen Inferenzaufgaben und Fragestellungen im Zusammenhang mit den beteiligten Prozessen in den Phasen Modellinspektion und Modellvariation bildet den Abschluß.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26, 832–843

    Article  MATH  Google Scholar 

  • Berendt, B. (1996). Explaining preferred mental models in Allen inferences with a metrical model of imagery. Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society (pp. 489–494). Mahwah, NJ: Lawrence Erlbaum

  • Brachman, R. J. & Schmolze, J. G. (1985). An overview of the KL-ONE knowledge representation system. Cognitive Science, 9, 171–216

    Article  Google Scholar 

  • Byrne, R. M. J.& Johnson-Laird, P. N. (1989). Spatial reasoning. Journal of Memory and Language, 28, 564–575

    Article  Google Scholar 

  • Ehrlich, K. & Johnson-Laird, P. N. (1982). Spatial descriptions and referential continuity. Journal of Verbal Learning and Verbal Behavior, 21, 296–306

    Article  Google Scholar 

  • Evans, J. S. B. T., Newstead, S. E.& Byrne, R. M. J. (1993). Human reasoning. The psychology of deduction. Hove (UK): Lawrence Erlbaum

  • Frank, A. U. & Kuhn, W (eds.) (1995). Spatial information theory. A theoretical basis for GIS (Proceedings COSIT’95). Berlin, Heidelberg, New York: Springer

  • Freksa, C. (1991). Qualitative spatial reasoning. In: D. M. Mark & A. U. Frank (eds.), Cognitive and linguistic aspects of geographic space (pp. 361–372). Dordrecht: Kluwer

    Chapter  Google Scholar 

  • Freksa, C. (1992). Temporal reasoning based on semi-intervals. Artificial Intelligence, 54, 199–227

    Article  MathSciNet  Google Scholar 

  • Freksa, C. & Röhrig, R. (1993).Dimensions of qualitative spatialreasoning. In: N. Piera Carreté & M. Singh (eds.), Qualitative reasoning and decision technologies (pp. 483–492). Barcelona: CIMNE

    Google Scholar 

  • Güsgen, H. W. (1989). Spatial reasoning based on Allen’s temporal logic (Technical Report ICSI TR-89-049). Berkeley, CA: International Computer Science Institute

    Google Scholar 

  • Habel, C. (1995). KI-Lexikon: Mentale Modelle. KI, 9(6), 42

    Google Scholar 

  • Hernández, D. (1994). Qualitative representation of spatial knowledge. Berlin, Heidelberg, New York: Springer

    Book  MATH  Google Scholar 

  • Hunter, I. M. L. (1957). The solving of three-term series problems. British Journal of Psychology, 48, 286–298

    Article  Google Scholar 

  • Johnson-Laird, P. N. (1972). The three-term series problem. Cognition, 1, 57–82

    Article  Google Scholar 

  • Johnson-Laird, P. N. (1980). Mental models in cognitive science. Cognitive Science, 4, 71–115

    Article  Google Scholar 

  • Johnson-Laird, P. N. (1983). Mental models. Towards a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press

    Google Scholar 

  • Johnson-Laird, P. N. (1992). Mental models. In: S. C. Shapiro (ed.), Encyclopedia of artificial intelligence (2nd edn.) (pp. 932–939). New York, NY: Wiley

    Google Scholar 

  • Johnson-Laird, P. N. & Byrne, R. M. J. (1991). Deduction. Hove (UK): Lawrence Erlbaum

    Google Scholar 

  • Knauff, M. (1996). Der kognitive Raum. Experimentelle Untersuchungen zur mentalen Repräsentation räumlichen Wissens (Unveröffentlichte Dissertation). Freiburg: Philosophische Fakultäten, Albert-Ludwigs-Universität Freiburg

    Google Scholar 

  • Knauff, M., Rauh, R. & Schlieder, C. (1995). Preferred mental models in qualitative spatial reasoning: A cognitive assessment of Allen’s calculus. Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society (pp. 200–205). Mahwah, NJ: Lawrence Erlbaum

    Google Scholar 

  • Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodnessof fit to a nonmetric hypothesis. Psychometrika, 29, 1–27

    Article  MATH  MathSciNet  Google Scholar 

  • Ligozat, G. (1990). Weak representations of interval algebras. Proceedings of the Eighth National Conference on Artificial Intelligence (pp. 715–720). Menlo Park, CA: AAAI Press/MIT Press

    Google Scholar 

  • Maki, R. H. (1981). Categorization and distance effects with spatial linear orders. Journal of Experimental Psychology: Human Learning and Memory, 7, 15–32

    Google Scholar 

  • Mani, K. & Johnson-Laird, P. N. (1982). The mental representation of spatial descriptions. Memory & Cognition, 10, 181–187

    Article  Google Scholar 

  • May, M. (1996). Modell, mentales (mental model). In: G. Strube, B. Becker, C. Freksa, U. Hahn, K. Opwis & G. Palm (eds.), Wörterbuch der Kognitionswissenschaft (pp. 406–407). Stuttgart: Klett-Cotta

    Google Scholar 

  • Maybery, M. T., Bain, J. D. & Halford, G. S. (1986). Information-processing demands of transitive inference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 12, 600–613

    Google Scholar 

  • McNamara, T. P., Ratcliff R. & McKoon, G. (1984). The mental representation of knowledge acquired from maps. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 723–732

    Google Scholar 

  • Molenaar, M. & De Hoop, S. (eds.) (1994). Advanced geographic data modelling: Spatial data modelling and query languages for 2D and 3D applications. Delft: Nederlands Geodetic Commission

    Google Scholar 

  • Mukerjee, A. & Joe, G. (1990). A qualitative model for space. Pro-ceedings of the Eighth National Conference on Artificial Intelligence (pp. 721–727). Menlo Park, CA: AAAI Press/MIT Press

    Google Scholar 

  • Nebel, B. & Bürckert, H.-J. (1994). Reasoning about temporal relations: A maximal tractable subclass of Allen’s interval algebra. Proceedings of the Twelfth National Conference on Artificial Intelligence (Vol. I, pp. 356–361). Menlo Park, CA: AAAI Press/MIT Press

    Google Scholar 

  • Opwis, K.& Spada, H. (1994). Modellierung mit Hilfe wissensbasierter Systeme. In: T. Herrmann & W. Tack (eds.), Enzyklopädie der Psychologie. Themenbereich B: Methodologie und Methoden. Serie I: Forschungsmethoden der Psychologie. Band I: Methodologische Grundlagen der Psychologie (pp. 199–248). Göttingen: Verlag für Psychologie

    Google Scholar 

  • Potts, G. R. & Scholz, K. W. (1975). The internal representation of a three-term series problem. Journal of Verbal Learning and Verbal Behavior, 14, 439–452

    Article  Google Scholar 

  • Quillian, M. R. (1968). Semantic Memory. In: M. Minsky (ed.), Semantic information processing (pp. 227–270). Cambridge, MA: MIT Press

    Google Scholar 

  • Schlieder, C. (1995a). The construction of preferred mental models in reasoning with the interval relations (Technical Report 5/95). Freiburg: Institut fü r Informatik und Gesellschaft der Albert-Ludwigs-Universität Freiburg (erscheint in: C. Habel et al. (eds.), Mental models in discourse comprehension and reasoning)

  • Schlieder, C. (1995b). Reasoning about ordering. In: A. U. Frank & W. Kuhn (eds.), Spatial Information Theory. A Theoretical Basis for GIS (International Conference COSIT’95) (pp. 341–349). Berlin, Heidelberg, New York: Springer

    Chapter  Google Scholar 

  • Schlieder, C. (1996). Qualitative shape representation. In: P. A. Burrough & A. U. Frank (eds.), Geographic objects with indeterminate boundaries (pp. 123–140). London: Taylor & Francis

    Google Scholar 

  • Tulving, E. (1972). Episodic and semantic memory. In: E. Tulving & W. Donaldson (eds.), Organization of memory (pp. 381–403). New York, NY: Academic Press

    Google Scholar 

  • Vilain, M., Kautz, H. & van Beek, P. (1990). Constraint propagation algorithms for temporal reasoning: A revised report. In: D. S. Weld & J. de Kleer (eds.), Readings in qualitative reasoning about physical systems (pp. 373–381). San Mateo, CA: Morgan Kaufmann

    Chapter  Google Scholar 

  • Wagener, M. & Wender, K. F. (1985). Spatial representations and inference processes in memory for text. In: G. Rickheit & H. Strohner (eds.), Inferences in text processing (pp. 115–136). Amsterdam: Elsevier

    Chapter  Google Scholar 

  • Wender, K. F. & Wagener, M. (1990). Zur Verarbeitung räumlicher Informationen: Modelle und Experimente. Kognitionswissenschaft, 1, 4–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rauh, R., Schlieder, C. & Knauff, M. Präferierte mentale Modelle beim räumlich-relationalen Schließen: Empirie und kognitive Modellierung. Kognit. Wiss. 6, 21–34 (1996). https://doi.org/10.1007/s001970050027

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001970050027

Navigation