Skip to main content
Log in

Kommunizierende Agenten: Gestische und natürlichsprachliche Interaktion

Communicating agents: Gesture and natural language interaction

  • Published:
Kognitionswissenschaft

Summary

An important scientific method within cognitive science consists in the synthesis of cognitive abilities, of forms of behavior by developing specific artificial agents. Many current approaches make use of the notion of an agent in order to develop concepts of cognitive behavior on different levels of abstraction. Basic properties of agents are: reactivity, autonomy, goal directed activity, and communication. This contribution examines the communicative aspect, i.e. the interaction by gesture or language and their integration, e.g. in identifying referents. Since we conceive communicating agents as systems able to synthesize such interactions as well as their integration, this will be illustrated with respect to two artificial systems. The GRAVIS system detects objects as well as pointing gestures of an instructor, and the camera agent is able to focus on specific objects. The CoRA system processes situated natural language instructions, and the simulated robot agent is able to integrate the use of language, perception and action. Finally we propose an integration of both approaches.

Zusammenfassung

Ein wichtiger Forschungsansatz innerhalb der Kognitionswissenschaft besteht in der Synthese kognitiver Fähigkeiten und Verhaltensweisen durch den Bau geeigneter, künstlicher Systeme. Viele der in jüngerer Zeit verfolgten Ansätze nutzen dabei den Begriff des Agenten, um kognitives Verhalten auf unterschiedlichen Abstraktionsebenen zu konzeptualisieren. Grundeigenschaften von Agenten sind u.a. Reaktivität, Autonomie, Zielgerichtetheit und Kommunikationsfähigkeit. In dem vorliegenden Beitrag interessieren wir uns für die Ebene kommunikativen Verhaltens, bei der Gestik und Sprache zur Vermittlung eines Sachverhaltes zusammenwirken, und verstehen unter einem kommunizierenden Agenten ein System, das für solches Verhalten einen nennenswerten Kompetenzausschnitt realisiert. Wir stellen hierzu beispielhaft zwei Systeme vor. Das System GRAVIS demonstriert die Referenzierung von Objekten im Blickfeld eines Kamerakopfes durch Handzeigegestik eines Instrukteurs. Das System CoRA demonstriert die Verarbeitung sprachlicher Handlungsanweisungen im Kontext der Kooperation mit einem simulierten Roboter. Abschließend wird die Integration der beiden Ansätze diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Agre, P. & Chapman, D. (1990). What Are Plans For? In Maes, P. (Ed.), Designing Autonomous Agents: Theory and Practice from Biology to Engineering and Back, volume 6,1 of Robotics and autonomous systems, pp. 17–34.

  • Ahmad, S. (1991). VISIT: An efficient computational model of human visual attention. PhD thesis, ICSI, Univ. of California, Berkley.

    Google Scholar 

  • Alexander, I. (1989). Neural Computing Architectures. North Oxford Academic Pub. Ltd.

  • Almássy, N. & Verschure, P. (1992). Optimizing self-organization control architectures with genetic algorithms: The interaction between natural selection and ontogenesis. In R. Manderick, B. M. (Ed.), Parallel Problem Solving from Nature, 2: Proceedings of the Second Conference on Parallel Problem Solving from nature, Brussels, pp. 451–460. North-Holland.

  • Blanchet, P. (1994). An Architecture for Representing and Learning Behaviors by Trial and Error. In Proceedings Congress SAB’94: From Animals to Animats III, Simulation of Adaptative Behavior, Brighton (England).

  • Bollmann, M., Hoischen, R. & Mertsching, B. (1997). Interaction of static and dynamic scene — features guiding visual attention. In Paulus, E. & Wahl, F. (Hrsg.), DAGM Mustererkennung 1997, Informatik aktuell, pp. 483–490, Berlin: Springer-Verl

    Google Scholar 

  • Brooks, R. (1986). A robust layered control system for a mobile robot. In IEEE Journal of Robotics and Automation, volume 2, 1, pp. 14–23.

    Article  MathSciNet  Google Scholar 

  • Brooks, R. (1991). Challenges for Complete Creature Architectures. In Meyer, J.-A. & Wilson, S. (Eds.), From animals to animats, First International Conference on Simulation of Adaptive Behavior, pp. 434–443.

  • Cameron, S., Grossberg, S. & Guenther, F. H. (1998). A self-organizing neural network architecture for navigation using optic flow. Neural Computation, 10(2):313–352.

    Article  Google Scholar 

  • Chapman, D. (1991). Vision, Instruction & Action. Cambridge, MA: MIT Press

    Google Scholar 

  • Clark, A. (Ed.) (1997). Being There. Putting Brain, Body, and World Together Again. Cambridge, Massachusetts: MIT Press, A Bradford Book

  • Doya, K. (1997). Efficient nonlinear control with actor-tutor architecture. In Mozer, M. C., Jordan, M. I. & Petsche, T. (Eds.), Advances in Neural Information Processing Systems, volume 9, p. 1012. The MIT Press.

  • Fiehler, R. (Ed.) (1980). Kommunikation und Kooperation. Theoretische und empirische Untersuchungen zur kommunikativen Organisation kooperativer Prozesse. Berlin: Einhorn

  • Fislage, M. (1998). Visuelle Aufmerksamkeitssteuerung bei gestikbasierter Mensch-Maschine Interaktion. Master’s thesis, Universität Bielefeld, Technische Fakultät.

  • Franklin, S. (1995). Artificial Minds. Cambridge, MA: MIT Press

    Google Scholar 

  • Franklin, S. & Graesser, A. (1996). Is It an Agent, or Just a Program: A Taxonomy for Autonomous Agents. In Müller, J. P., Woolridge, M. J. & Jennings, N. R. (Eds.), Intelligent Agents III. Agent Theories, Architectures and Languages, pp. 21–35. Berlin: Sprin

    Google Scholar 

  • Goecke, K. U. & Milde, J.-T. (1998). Natural language generation in a behavior-oriented robot control architecture. Submitted to publication.

  • Happel, B. L. M. & Murre, J. M. J. (1994). Design and evolution of modular neural-network architectures. Neural Networks, 7(6–7):985–1004.

    Article  Google Scholar 

  • Jackendoff, R. (1990). Semantic Structures. Current studies in linguistics series, 18. Cambridge, MA: MIT Press

    Google Scholar 

  • Jacobs, R. A., Jordan, M. I. & Barto, A. G. (1991). Task decomposition through competition in a modular connectionist architecture — the what and where vision tasks. Cognitive Science, 15(2):219–250.

    Article  Google Scholar 

  • Lobin, H. (1998). Handlungsanweisungen. Sprachliche Spezifikation teilautonomer Aktivität. Gütersloh: Deutscher Universitäts Verlag.

    Google Scholar 

  • Meier, C. & Rieser, H. (1995). Modelling Situated “Reference Shiftsïn Task-Oriented Dialogue. Technical Report 95/12, SFB 360, Universität Bielefeld.

  • Milde, J.-T. (1998). Action-centered communication with an embedded agent. In FLAIRS, Special Track on natural language processing and Human Computer Interaction.

  • Milde, J.-T., Peters, K. & Strippgen, S. (1997). Situated communication with robots. In Proceedings of the first international Workshop on Human-Computer Conversation, Bellagio, Italy.

  • Millikan, R. (Ed.) (1984). Language, Thought, and Other Biological Categories. Cambridge, Massachusetts: MIT Press

  • Niebur, E. & Koch, C. (1996). Control of selective visual attention: Modelling the “where” pathway. In Touretzky, D., Mozer, M. & Hasselmo, M. (Eds.), Advances in Neural Information Processing Systems 8 NIPS*95. Bradford: MIT Press.

    Google Scholar 

  • Nölker, C. & Ritter, H. (1998). Grefit: Visuelle Erkennung Kontinuierlicher Handposturen. In Dassow, J. & Kruse, R. (Hrsg.), Informatik ’98: Informatik zwischen Bild und Sprache, pp. 213–222, Magdeburg: Springer Verlag. Reihe “Informatik aktuell”.

    Google Scholar 

  • Peters, K., Strippgen, S. & Milde, J.-T. (1997). Language processing in action-centered communication. In Tagungsband der DGFS, Sektion Computerlinguistik, Heidelberg.

  • Peters, K., Strippgen, S. & Milde, J.-T. (1998). Cora — an instructable agent. In Proceedings of DARS, Karlsruhe.

  • Rae, R. & Ritter, H. (1998). 3d real-time tracking of points of interest based on zero-disparity filtering. In Posch, S. & Ritter, H. (Hrsg.), Workshop Dynamische Perzeption, Proceedings in Artificial Intelligence, pp. 105–111, Workshop der GI-Fachgruppe 1.0.4 Bildverstehen in Bielefeld, 18.–19. Jun., Germany. Sankt Augustin, Deutschland: INFIX-Verlag

  • Rieser, H. (1996). Repräsentations-Metonymie, Perspektive und aufgabenorientierten Dialogen. Technical Report 96/6, SFB 360, Universität Bielefeld.

  • Steels, L. (1998). The origin of syntax in visually grounded agents. In Artificial Intelligence, pp. 133–156.

  • Torrance, M. (1994). Natural Communication with Robots. Master’s thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology.

  • van Dam, J. W. M., Kröse, B. J. A. & Groen, F. C. A. (1994). CNN: A neural architecture that learns multiple transformations of spatial representations. In Marinaro, M. & Morasso, P. G. (Eds.), Artificial Neural Networks, pp. 1420–1423. Berlin Heidelberg New York: Springer-Verlag.

    Google Scholar 

  • Weiskrantz, L. (Ed.) (1988). Thought without language. Oxford University Press.

  • Zadel, S. (1996). An algorithm for bootstrapping the core of a biologically inspired motor control system. In von der Malsburg, C., von Seelen, W., Vorbrüggen, J. C. & Sendhoff, B. (Eds.), Proceedings of the International Conference on Artificial Neural Networks (ICANN’96), Bochum, Germany, July 16–19, volume 1112 of Lecture Notes in Computer Science, pp. 629–634, Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Metzing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metzing, D., Milde, J.T., Rae, R. et al. Kommunizierende Agenten: Gestische und natürlichsprachliche Interaktion. Kognit. Wiss. 8, 129–136 (1999). https://doi.org/10.1007/s001970050082

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001970050082

Keywords

Navigation