Skip to main content
Log in

Hyperelliptic curves with reduced automorphism group A 5

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We study genus g hyperelliptic curves with reduced automorphism group A 5 and give equations y 2 = f(x) for such curves in both cases where f(x) is a decomposable polynomial in x 2 or x 5. For any fixed genus the locus of such curves is a rational variety. We show that for every point in this locus the field of moduli is a field of definition. Moreover, there exists a rational model y 2 = F(x) or y 2 = x F(x) of the curve over its field of moduli where F(x) can be chosen to be decomposable in x 2 or x 5. While similar equations have been given in (Bujalance et al. in Mm. Soc. Math. Fr. No. 86, 2001) over \({\mathbb R}\) , this is the first time that these equations are given over the field of moduli of the curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandt R. and Stichtenoth H. (1986). Die Automorphismengruppen hyperelliptischer Kurven. Manuscr. Math. 55(1): 83–92

    Article  MathSciNet  MATH  Google Scholar 

  2. Bujalance E., Cirre F. J., Gamboa J. M., Gromadzki G.: Symmetry types of hyperelliptic Riemann surfaces. Mm. Soc. Math. Fr. No. 86 (2001)

  3. Clebsch A. (1872). Theorie der Binären Algebraischen Formen. Verlag von B.G. Teubner, Leipzig

    MATH  Google Scholar 

  4. Gutierrez J. (1991). A polynomial decomposition algorithm over factorial domains. Comptes Rendues Mathematiques, de Ac. de Sciences 13: 81–86

    MathSciNet  MATH  Google Scholar 

  5. Gutierrez J., Rubio R. and Sevilla D. (2002). On multivariate rational function decomposition. J. Symb. Comput. 33(5): 546–562

    Article  MathSciNet  Google Scholar 

  6. Gutierrez J. and Shaska T. (2005). Hyperelliptic curves with extra involutions. LMS JCM. 8: 102–115

    MathSciNet  MATH  Google Scholar 

  7. Gutierrez J., Sevilla D. and Shaska T. (2005). Hyperelliptic curves of genus 3 and their automorphisms. Lect. Notes Comput. 13: 109–123

    Article  MathSciNet  Google Scholar 

  8. Klein F. (1956). Lectures on the icosahedron and the solution of equations of the fifth degree. Dover, New York

    MATH  Google Scholar 

  9. Shaska T. (2004). Some special families of hyperelliptic curves. J. Algebra Appl. 3(1): 75–89

    Article  MathSciNet  MATH  Google Scholar 

  10. Shaska, T.: Computational aspects of hyperelliptic curves, Computer mathematics. In: Proceedings of the sixth Asian symposium (ASCM 2003), Beijing, China, April 17–19, 2003. World Scientific. River Edge Lect. Notes Ser. Comput. 10, 248–257 (2003)

  11. Völklein, H.: Groups as Galois groups. An introduction. Cambridge Studies in Advanced Mathematics, 53. Cambridge University Press (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sevilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevilla, D., Shaska, T. Hyperelliptic curves with reduced automorphism group A 5 . AAECC 18, 3–20 (2007). https://doi.org/10.1007/s00200-006-0030-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-006-0030-9

Keywords

Navigation