Skip to main content
Log in

A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part I: Construction

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

We propose a new method for space-time refinement for the 1-D wave equation. This method is based on the conservation of a discrete energy through two different discretization grids which guarantees the stability of the scheme. Our approach results in a non-interpolatory scheme whose stability condition is not affected by the transition between the two grids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bamberger, A., Glowinski, R., Tran, Q.H.: A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change. SIAM J. Num. Anal. 34(2), 603–639 (1997)

    MATH  Google Scholar 

  2. Bernardi, C., Maday, Y.: Raffinement de maillage en éléments finis par la méthode des joints. C. R. Acad. Sci. Paris Sér. I Math. 320(3), 373–377 (1995)

    MATH  Google Scholar 

  3. Chevalier, M.W., Luebbers, R.J.: FDTD local grid with material traverse. IEEE Trans. Antennas and Propagation 45(3), 411–421 (1997)

    Article  Google Scholar 

  4. Collino, F., Fouquet, T., Joly, P.: A conservative space-time mesh refinement method for the 1-D wave equations: Analysis. Numer. Math. 95(2), 223–251 (2003)

    Google Scholar 

  5. Collino, F., Fouquet, T., Joly, P.: Analyse numérique d'une méthode de raffinement de maillage espace-temps pour l'équation des ondes. Technical Report 3474, INRIA, Aout 1998

  6. Fouquet, T.: Raffinement de maillage spatio temporel pour les équations de Maxwell. PhD thesis, Université Paris IX Dauphine, June 2000

  7. Gedney, S.D., Lansing, F.: Computational Electrodynamics: the Finite-Difference Time-Domain Method, chapter Explicit Time-Domain Solution of Maxwell's Equations Using Nonorthogonal and Unstructured Grids, pp. 343–393. A. Taflove, Artech House Boston London edition, 1995

  8. Gustafsson, B., Kreiss, H.-O., Sundström, A.: Stability theory of difference approximations for initial boundary value problems. Math. Comp. 26, 649–686 (1972)

    MATH  Google Scholar 

  9. Kim, I.S., Hoefer, W.J.R.: A local mesh refinement algorithm for the time-domain finite-difference method to solve Maxwell's equations. IEEE Trans. Microwave Theory Tech. 38(6), 812–815 (1990)

    Google Scholar 

  10. Kunz, K.S., Simpson, L.: A technique for increasing the resolution of finite-difference solutions to the Maxwell equations. IEEE Trans. Electromagn. Compat. EMC-23, 419–422 (1981)

  11. Monk, P.: Sub-gridding FDTD schemes. ACES J. 11, 37–46 (1996)

    Google Scholar 

  12. Prescott, D.T., Shuley, N.V.: A method for incorporating different sized cells into the finite-difference time-domain analysis technique. IEEE Microwave Guided Wave Lett. 2, 434–436 (1992)

    Article  Google Scholar 

  13. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas and propagation 302–307 (1966)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Joly.

Additional information

Mathematics Subject Classification (1991): 65M12

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collino, F., Fouquet, T. & Joly, P. A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part I: Construction. Numer. Math. 95, 197–221 (2003). https://doi.org/10.1007/s00211-002-0446-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-002-0446-5

Keywords

Navigation