Skip to main content
Log in

The fixed poles of the disturbance decoupling problem and almost stability subspace \(\mathcal V^\star_{b,g}({\rm ker}(C))\)

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

This paper is concerned with the fixed poles of the disturbance decoupling problem for linear time-invariant systems by state feedback and measurement feedback. Algebraic characterizations for these fixed poles are given using the reducing subspace technique in numerical linear algebra. These algebraic characterizations lead that the fixed poles can be directly computed by numerically reliable algorithms. As an additional application of the reducing subspace technique, we also develop a numerically stable method for computing the almost stability subspace \(\mathcal V^\star_{b,g}({\rm ker}(C))\), which is an extension of the method given by Van Dooren for computing the invariant subspaces in geometric control theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koussiouris, T.G., Tzierakis, K.G.: Frequency-domain conditions for disturbance rejection and decoupling with stability or pole placement. Automatica 32, 229–234 (1996)

    Article  Google Scholar 

  2. Rakowski, M.: Transfer function approach to disturbance decoupling problem. In: IMA Vol. Math. Appl. 62, Springer-Verlag, 1994, pp. 159–176

  3. Syrmos, V.L.: Disturbance decoupling using constrained Sylvester equations. IEEE Trans. Automat. Control AC-39, 797–803 (1994)

    Google Scholar 

  4. Basile, G., Marro, G.: Controlled and conditioned invariant subspaces in linear system theory. J. Optim. Theory Appl. 3, 306–315 (1969)

    MATH  Google Scholar 

  5. Basile, G., Marro, G.: Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, Englewood Cliffs, New Jersey, 1992

  6. Chu, D., Mehrmann, V.: Disturbance decoupling for linear time-invariant systems: A matrix pencil approach. IEEE Trans. Automat. Control AC-46, 802–808 (2001)

    Google Scholar 

  7. Demmel, J.W., Kågström, B.: The generalized Schur decomposition of an arbitrary pencil AB: Robust software with error bounds and applications. part i: Theory and algorithms. ACM Trans. Math. Software, 1993

  8. Demmel, J.W., Kågström, B.: Accuract solution of ill-posed problems in control theory. SIAM J. Matrix Anal. Appl. 9, 126–145 (1988)

    MathSciNet  Google Scholar 

  9. Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkins University Press, Baltimore, Maryland, 3rd edition, 1996

    Google Scholar 

  10. Imai, H., Akashi, H.: Disturbance localization and pole shifting by dynamic compensation. IEEE Trans. Automat. Control AC-26, 226–235 (1981)

    Google Scholar 

  11. Moore, B.C., Laub, A.J.: Computation of Supremal (A, B)-invariant and controllability subspaces. IEEE Trans. Automat. Control AC-23, 783–792 (1978)

    Google Scholar 

  12. Malabre, M., Martinez Garcia, J.C.: On the fixed poles for disturbance rejection. Automatica 33, 1209–1211 (1997)

    Article  MathSciNet  Google Scholar 

  13. Muro Cuellar, B.D., Malabre, M.: Geometric and structural characterizations for the fixed poles of disturbance rejection by (dynamic) output feedback. Submitted for publication

  14. Miminis, G., Paige, C.C.: A direct algorithm for pole assignment of time-invariant multi-input linear systems using state feedback. Automatica 24, 343–356 (1988)

    Article  MathSciNet  Google Scholar 

  15. Schumacher, J.M.: Compensator synththesis using (C, A, B)-pairs. IEEE Trans. Automat. Control AC-25, 1133–1138 (1980)

  16. Van Dooren, P.: The generalized eigenstructure problem in linear system theory. IEEE Trans. Automat. Control AC-26, 111–129 (1981)

    Google Scholar 

  17. Van Dooren, P.: Reducing subspaces: Computational aspect and applications in linear system theory. Proceedings 5th Int. Confer. Anal. Optim. Syst. 44, 935–953, December, 1982

  18. Van Dooren, P.: Reducing subspaces: Definitions and Algorithms. Proceedings Matrix Pencils 973, 58–73 (1983)

    MATH  Google Scholar 

  19. Ozguler, A.B., Eldem, V.: Disturbance decoupling problems via dynamic output feedback. IEEE Trans.Automat. Control, AC-30, 756–764 (1985)

    Google Scholar 

  20. Willems, J.C. Commault, C.: On disturbance decoupling by measurement feedback with stability or pole placement. SIAM J. Control Optim., 490–504 (1981)

  21. Eldemand, V., Ozguler, A.B.: Disturbance decoupling problem by measurement feedback: A characterization of all solutions and fixed modes. SIAM J. Control Optim., 168–185 (1988)

  22. Conte, G., Perdon, A.M., Wyman, B.F.: Fixed poles in transfer function equations. SIAM J. Control Optim., 357–368 (1988)

  23. Wonham, W.M.: Linear Multivariable Control: A Geometric Approach. Springer-Verlag, New York, second edition, 1985

  24. Weiland, S., Willems, J.C.: Almost disturbance decoupling with internal stability. IEEE Trans. Automat. Control 34, 277–286 (1989)

    Article  MathSciNet  Google Scholar 

  25. Malabre, M.: Almost invariant subspaces, transmission and infinite zeros: A lattic interpretation. Syst. Contr. Lett. 1, 347–355 (1982)

    MathSciNet  Google Scholar 

  26. Schumacher, J.M.: Almost stabilizability subspaces and high gain feedback. IEEE Trans. Automat. Control 29, 620–627 (1984)

    MathSciNet  Google Scholar 

  27. Trentelman, H.L.: Almost invariant subspaces and high gain feedback. CWI Tract 29, Amsterdam, The Netherlands, 1986

  28. Trentelman, H.L., van der Woude, J.W.: Almost invariance and noninteracting control: A frequency domain analysis. Lin. Alg. Appl. 101, 221–254 (1988)

    Article  MathSciNet  Google Scholar 

  29. Willems, J.C.: Almost invariant subspaces: An approach to high gain feedback design-Part I: Almost controlled invariant subspaces. IEEE Trans. Automat. Control 26, 235–252 (1981)

    MathSciNet  Google Scholar 

  30. Willems, J.C.: Almost invariant subspaces: An approach to high gain feedback design-Part II: Almost conditionally invariant subspaces. IEEE Trans. Automat. Control 27, 1071–1085 (1982)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delin Chu.

Additional information

Mathematics Subject Classification (2000): 93B05, 93B40, 93B52, 65F35

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, D. The fixed poles of the disturbance decoupling problem and almost stability subspace \(\mathcal V^\star_{b,g}({\rm ker}(C))\) . Numer. Math. 96, 221–252 (2003). https://doi.org/10.1007/s00211-003-0472-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-003-0472-y

Keywords

Navigation