Skip to main content
Log in

Multi-level spectral galerkin method for the navier-stokes problem I : spatial discretization

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A multi-level spectral Galerkin method for the two-dimensional non-stationary Navier-Stokes equations is presented. The method proposed here is a multiscale method in which the fully nonlinear Navier-Stokes equations are solved only on a low-dimensional space subsequent approximations are generated on a succession of higher-dimensional spaces j=2, . . . ,J, by solving a linearized Navier-Stokes problem around the solution on the previous level. Error estimates depending on the kinematic viscosity 0<ν<1 are also presented for the J-level spectral Galerkin method. The optimal accuracy is achieved when We demonstrate theoretically that the J-level spectral Galerkin method is much more efficient than the standard one-level spectral Galerkin method on the highest-dimensional space .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cannon, J.R., Ewing, R.E.: He, Y.N. and Lin, Y.P. A modified nonlinear Galerkin method for the viscoelastic fluid motion equations. Internat. J. Engrg. Sci. 37, 1643–1662 (1999)

    MathSciNet  Google Scholar 

  2. Devulder, C., Temam, R., Titi, E.S.: On the rate of convergence of the nonlinear Galerkin methods. Math. Comp. 60, 495–514 (1993)

    MATH  MathSciNet  Google Scholar 

  3. Foias, C., Manley, O., Temam, R.: Modelling of the interaction of small and large eddies in two dimensional turbulent flows. RAIRO Model. Math. Anal. Numer. 22, 93–114 (1988)

    MATH  MathSciNet  Google Scholar 

  4. Girault, V., Lions, J.L.: Two-grid finite element scheme for the steady Navier-Stokes Equations in polyhedra. Portugal. Math. 58, 25–57 (2001)

    MATH  MathSciNet  Google Scholar 

  5. Girault, V., Lions, J.L.: Two-grid finite element scheme for the transient Navier-Stokes problem. Math. Model. Numer. Anal. 35, 945–980 (2001)

    MATH  MathSciNet  Google Scholar 

  6. Garcia-Archilla, B., Novo, J., Titi, E.S.: Postprocessing the Galerkin method: a novel approach to approximate inertial manifolds. SIAM J. Numer. Anal. 35, 941–972 (1998)

    MATH  MathSciNet  Google Scholar 

  7. Garcia-Archilla, B., Novo, J., Titi, E.S.: An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier-Stokes equations. Math. Comp. 68, 893–911 (1999)

    MATH  MathSciNet  Google Scholar 

  8. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes Equations Spinger, Berlin, New York, 1979

  9. He, Y.N.: Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations. SIAM Numer. Anal. 41, 1263–1285 (2003)

    Article  MATH  Google Scholar 

  10. He, Y.N., Liu, K.M.: A multi-level finite element method for the time-dependent Navier-Stokes equations. Numer. Methods for PDEs, published online, April 20, 2005

  11. He, Y.N., Mattheij, R.M.M.: Stability and convergence for the reform postprocessing Galerkin method. Nonlinear Anal. Real. World Appl. 1, 517–533 (2000)

    MATH  MathSciNet  Google Scholar 

  12. He, Y.N., Hou, Y.R., Li, K.T.: Stability and convergence of optimum spectral non-linear Galerkin methods. Math. Methods Appl. Sci. 24, 289–317 (2001)

    MATH  MathSciNet  Google Scholar 

  13. He, Y.N., Li, K.T.: Fully discrete postprocessing Galerkin method for the Navier-Stokes equations, Dynamics of Continuous. Discrete and Impulsive Systems, series A-Math. Anal. 11(5–6), 615–630 (2004)

    Google Scholar 

  14. Heywood, J.G., Rannacher, R.: On the question of turbulence modeling by appoximate inertial manifolds and the nonlinear Galerkin method. SIAM J. Numer. Anal. 30, 1603–1621 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem I: Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hill, A.T., Süli, E.: Approximation of the global attractor for the incompressible Navier-Stokes problem. IMA J. Numer. Anal. 20, 633–667 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Layton, W.: A two-level discretization method for the Navier-Stokes equations. Comput. Math. Appl. 26, 33–38 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Layton, W., Leferink, H.W.J.: A multilevel mesh independence principle for the Navier-Stokes equations. SIAM J. Numer. Anal. 33, 17–30 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Layton, W., Lee, H.K., Peterson, J.: Numerical solution of the stationary Navier-Stokes equations using A multilevel finite element method. SIAM J. Sci. Comput. 20, 1–12 (1998)

    Article  MathSciNet  Google Scholar 

  20. Layton, W., Tobiska, L.: A two-level method with backtraking for the Navier-Stokes equations. SIAM J. Numer. Anal. 35, 2035–2054 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Margolin, L.G., Titi, E.S., Wynne, S.: Postprocessing the Galerkin and nonlinear Galerkin methods- a truncation analysis point of view. SIAM J. Numer. Anal. 41, 695–714 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Métivier, G.: Étude Asymptotique des valeurs propres et la fonction spectrale de problèms aux limites, Thèse. Université de Nice, France, 1976

  23. Olshanskii, M.A.: Two-level method and some a priori estimates in unsteady Navier-Stokes calculations. J. Comp. Appl. Math. 104, 173–191 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Spinger, New York, Berlin, 1988

  25. Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    MATH  MathSciNet  Google Scholar 

  26. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinnian He.

Additional information

The work of this author was supported in part by the NSF of China 10371095, City University of Hong Kong Research Project 7001093 Hong Kong and the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 1084/02P)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Liu, KM. & Sun, W. Multi-level spectral galerkin method for the navier-stokes problem I : spatial discretization. Numer. Math. 101, 501–522 (2005). https://doi.org/10.1007/s00211-005-0632-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0632-3

Mathematics Subject Classification (2000)

Navigation