Skip to main content
Log in

Asymptotically exact functional error estimators based on superconvergent gradient recovery

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The use of dual/adjoint problems for approximating functionals of solutions of PDEs with great accuracy or to merely drive a goal-oriented adaptive refinement scheme has become well-accepted, and it continues to be an active area of research. The traditional approach involves dual residual weighting (DRW). In this work we present two new functional error estimators and give conditions under which we can expect them to be asymptotically exact. The first is of DRW type and is derived for meshes in which most triangles satisfy an -approximate parallelogram property. The second functional estimator involves dual error estimate weighting (DEW) using any superconvergent gradient recovery technique for the primal and dual solutions. Several experiments are done which demonstrate the asymptotic exactness of a DEW estimator which uses a gradient recovery scheme proposed by Bank and Xu, and the effectiveness of refinement done with respect to the corresponding local error indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York, 2000

  2. Babuška, I., Ihlenburg, F., Strouboulis, T., Gangaraj, S.K.: A posteriori error estimation for finite element solutions of Helmholtz' equation. II. Estimation of the pollution error. Internat. J. Numer. Methods Engrg. 40(21), 3883–3900 (1997)

    Google Scholar 

  3. Babuška, I., Miller, A.: The post-processing approach in the finite element method. Part 1. Calculation of displacements, stresses and other higher derivatives of the displacements. Internat. J. Numer. Methods Engrg. 20, 1085–1109 (1984)

    Google Scholar 

  4. Babuška, I., Miller, A.: The post-processing approach in the finite element method. Part 2. The calculation of stress intensity factors. Internat. J. Numer. Methods Engrg. 20, 1111–1129 (1984)

    Google Scholar 

  5. Babuška, I., Miller, A.: The post-processing approach in the finite element method. Part 3. A posteriori error estimates and adaptive mesh selection. Internat. J. Numer. Methods Engrg. 20, 2311–2324 (1984)

    Google Scholar 

  6. Bank, R.E. Pltmg: A software package for solving elliptic partial differential equations, users' guide 9.0. Technical report, University of California, San Diego, 2004

  7. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators. I. Grids with superconvergence. SIAM J. Numer. Anal. 41(6), 2294–2312 (2003) (electronic)

    Google Scholar 

  8. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators. II. General unstructured grids. SIAM J. Numer. Anal. 41(6), 2313–2332 (2003) (electronic)

    Google Scholar 

  9. Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math. 4(4), 237–264 (1996)

    Google Scholar 

  10. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)

    Google Scholar 

  11. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, volume 15 of Texts in Applied Mathematics. Springer-Verlag, New York, 1994

  12. Brezzi, F., Hughes, T.J.R., Marini, L.D., Russo, A., Süli, E.: A priori error analysis of residual-free bubbles for advection-diffusion problems. SIAM J. Numer. Anal. 36(6), 1933–1948 (1999) (electronic)

    Google Scholar 

  13. Du, L., Yan, N.: Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes. Adv. Comput. Math. 14(2), 175–193 (2001)

    Google Scholar 

  14. Durán, R., Muschietti, M.A., Rodríguez, R.: On the asymptotic exactness of error estimators for linear triangular finite elements. Numer. Math. 59, 107–127 (1991)

    Google Scholar 

  15. Estep, D.J., Holst, M.J., Larson, M.: Generalized green's functions and the effective domain of influence. SIAM J. Sci. Comput. 26(4), 1314–1339 (2005)

    Google Scholar 

  16. Giles, M., Süli, E.: Adjoint methods for pdes: a posteriori error analysis and postprocessing by duality. In: Acta Numerica, vol. 11, Cambridge University Press, 2002, pp. 145–236

  17. Heuveline, V., Rannacher, R.: Duality-based adaptivity in the hp-finite element method. J. Numer. Math. 11(2), 95–113 (2003)

    Google Scholar 

  18. Li, B., Zhang, Z.: Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements. Numer. Meth. Partial Differential Equations 15(2), 151–167 (1999)

    Google Scholar 

  19. Louis, A.: Acceleration of convergence for finite element solutions of the poisson equation. Numer. Math. 33, 43–53 (1979)

    Google Scholar 

  20. Ovall, J.S.: Duality-Based Adaptive Refinement for Elliptic PDEs. PhD Thesis, Department of Mathematics. University of California at San Diego, 2004

  21. Pierce, N.A., Giles, M.B.: Adjoint recovery of superconvergent functionals from PDE approximations. SIAM Rev. 42(2), 247–264 (2000) (electronic)

    Google Scholar 

  22. Prudhomme, S., Oden, J.T.: On goal-oriented error estimation for elliptic problems: application to control of pointwise errors. Comput. Methods Appl. Mech. Engrg. 1–4, 313–331 (1999)

    Google Scholar 

  23. Russo, A.: A posteriori error estimators via bubble functions. Math. Models Methods Appl. Sci. 6(1), 33–41 (1996)

  24. Schatz, A.H., Wahlbin, L.B.: Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. II. The piecewise linear case. Math. Comp. 73(246), 517–523 (2004) (electronic)

    Google Scholar 

  25. Wahlbin, L.B.: Local behavior in finite element methods. In: Handbook of numerical analysis, Vol. II, Handb. Numer. Anal. II, North-Holland, Amsterdam, 1991, pp. 353–522

  26. Xu, J., Zhang, Z.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comp. 73(247), 1139–1152 (2004) (electronic)

    Google Scholar 

  27. Yan, N., Zhou, A.: Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes. Comput. Methods Appl. Mech. Engrg. 190(32–33), 4289–4299 (2001)

    Google Scholar 

  28. Zhu, J.Z., Zienkiewicz, O.C.: Superconvergence recovery technique and a posteriori error estimators. Internat. J. Numer. Methods Engrg. 30(7), 1321–1339 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Ovall.

Additional information

Resubmitted to Numerische Mathematik, June 30, 2005, with changes suggested by referees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovall, J. Asymptotically exact functional error estimators based on superconvergent gradient recovery. Numer. Math. 102, 543–558 (2006). https://doi.org/10.1007/s00211-005-0655-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0655-9

Mathematics Subject Classifications 2000

Navigation