Skip to main content
Log in

A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We propose and analyze a numerical scheme for nonlinear degenerate parabolic convection–diffusion–reaction equations in two or three space dimensions. We discretize the diffusion term, which generally involves an inhomogeneous and anisotropic diffusion tensor, over an unstructured simplicial mesh of the space domain by means of the piecewise linear nonconforming (Crouzeix–Raviart) finite element method, or using the stiffness matrix of the hybridization of the lowest-order Raviart–Thomas mixed finite element method. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. Checking the local Péclet number, we set up the exact necessary amount of upstream weighting to avoid spurious oscillations in the convection-dominated case. This technique also ensures the validity of the discrete maximum principle under some conditions on the mesh and the diffusion tensor. We prove the convergence of the scheme, only supposing the shape regularity condition for the original mesh. We use a priori estimates and the Kolmogorov relative compactness theorem for this purpose. The proposed scheme is robust, only 5-point (7-point in space dimension three), locally conservative, efficient, and stable, which is confirmed by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aavatsmark I., Barkve T., Bøe Ø., Mannseth T. (1998) Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods. SIAM J. Sci. Comput. 19(5):1700–1716

    Article  MATH  MathSciNet  Google Scholar 

  2. Afif M., Amaziane B. (2002) Convergence of finite volume schemes for a degenerate convection–diffusion equation arising in flow in porous media. Comput. Methods Appl. Mech. Eng. 191(46):5265–5286

    Article  MATH  MathSciNet  Google Scholar 

  3. Angot P., Dolejší V., Feistauer M., Felcman J. (1998) Analysis of a combined barycentric finite volume-nonconforming finite element method for nonlinear convection–diffusion problems. Appl. Math. 43(4):263–310

    Article  MATH  MathSciNet  Google Scholar 

  4. Arbogast T., Wheeler M.F., Zhang N.Y. (1996) A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Numer. Anal. 33(4):1669–1687

    Article  MATH  MathSciNet  Google Scholar 

  5. Arnold D.N., Brezzi F. (1985) Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19(1):7–32

    MATH  MathSciNet  Google Scholar 

  6. Bank R.E., Rose D.J. (1987) Some error estimates for the box method. SIAM J. Numer. Anal. 24(4):777–787

    Article  MATH  MathSciNet  Google Scholar 

  7. Barrett J.W., Knabner P. (1997) Finite element approximation of the transport of reactive solutes in porous media. I. Error estimates for nonequilibrium adsorption processes. SIAM J. Numer. Anal. 34(1):201–227

    Article  MATH  MathSciNet  Google Scholar 

  8. Barrett J.W., Knabner P. (1997) Finite element approximation of the transport of reactive solutes in porous media. II. Error estimates for equilibrium adsorption processes. SIAM J. Numer. Anal. 34(2):455–479

    Article  MATH  MathSciNet  Google Scholar 

  9. Baughman L.A., Walkington N.J. (1993) Co-volume methods for degenerate parabolic problems. Numer. Math. 64(1):45–67

    Article  MATH  MathSciNet  Google Scholar 

  10. Bear, J., Verruijt, A.: Modelling groundwater flow and pollution. In: Theory and Applications of Transport in Porous Media, vol. 2. Kluwer, Dordrecht (1987)

  11. Brezis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maî trise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris (1983). Théorie et applications. [Theory and applications]

  12. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. In: Springer Series in Computational Mathematics, vol. 15. Springer, Berlin Heidelberg New York (1991)

  13. Cai Z.Q., Mandel J., McCormick S. (1991) The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28(2):392–402

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen Z. (1996) Equivalence between and multigrid algorithms for nonconforming and mixed methods for second-order elliptic problems. East-West J. Numer. Math. 4(1):1–33

    MathSciNet  Google Scholar 

  15. Chen Z., Ewing R.E. (2001) Degenerate two-phase incompressible flow. III. Sharp error estimates. Numer. Math. 90(2):215–240

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen Z., Ewing R.E., Jiang Q., Spagnuolo A.M. (2002) Error analysis for characteristics-based methods for degenerate parabolic problems. SIAM J. Numer. Anal. 40(4):1491–1515

    Article  MATH  MathSciNet  Google Scholar 

  17. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, Vol. II, pp. 17–351. North-Holland, Amsterdam (1991)

  18. Coudière Y., Vila J.P., Villedieu P. (1999) Convergence rate of a finite volume scheme for a two-dimensional convection–diffusion problem. M2AN Math. Model. Numer. Anal. 33(3):493–516

    Article  MATH  MathSciNet  Google Scholar 

  19. Dawson C. (1998) Analysis of an upwind-mixed finite element method for nonlinear contaminant transport equations. SIAM J. Numer. Anal. 35(5):1709–1724

    Article  MATH  MathSciNet  Google Scholar 

  20. Debiez, C., Dervieux, A., Mer, K., Nkonga, B.: Computation of unsteady flows with mixed finite volume/finite element upwind methods. Int. J. Numer. Methods Fluids 27(1–4, Special Issue), 193–206 (1998). Finite elements in fluids

    Google Scholar 

  21. Douglas J., Jr, Roberts J.E. (1985) Global estimates for mixed methods for second order elliptic equations. Math. Comp. 44(169):39–52

    Article  MATH  MathSciNet  Google Scholar 

  22. Ebmeyer C. (1998) Error estimates for a class of degenerate parabolic equations. SIAM J. Numer. Anal. 35(3):1095–1112

    Article  MATH  MathSciNet  Google Scholar 

  23. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of Numerical Analysis, Vol. VII, pp. 713–1020. North-Holland, Amsterdam (2000)

  24. Eymard R., Gallouët T., Herbin R. (2006) A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension. IMA J. Numer. Anal. 26(2):326–353

    Article  MATH  MathSciNet  Google Scholar 

  25. Eymard R., Gallouët T., Herbin R., Michel A. (2002) Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92(1):41–82

    Article  MATH  MathSciNet  Google Scholar 

  26. Eymard R., Gallouët T., Hilhorst D., Naït Slimane Y. (1998) Finite volumes and nonlinear diffusion equations. RAIRO Modél. Math. Anal. Numér. 32(6):747–761

    MATH  Google Scholar 

  27. Eymard R., Gutnic M., Hilhorst D. (2000) The finite volume method for Richards equation. Comput. Geosci. 3(3-4):259–294

    MathSciNet  Google Scholar 

  28. Eymard, R., Hilhorst, D., Vohralík, M.: Combined nonconforming/mixed-hybrid finite element–finite volume scheme for degenerate parabolic problems. In: Numerical Mathematics and Advanced Applications, pp. 288–297. Springer, Berlin Heidelberg New York (2004)

  29. Faille I. (1992) A control volume method to solve an elliptic equation on a two-dimensional irregular mesh. Comput. Methods Appl. Mech. Eng. 100(2):275–290

    Article  MATH  MathSciNet  Google Scholar 

  30. Feistauer M., Felcman J., Lukáčová-Medvid’ová M. (1997) On the convergence of a combined finite volume–finite element method for nonlinear convection–diffusion problems. Numer. Methods Partial Differ. Equ. 13(2):163–190

    Article  MATH  Google Scholar 

  31. Forsyth P.A. (1991) A control volume finite element approach to NAPL groundwater contamination. SIAM J. Sci. Statist. Comput. 12(5):1029–1057

    Article  MATH  MathSciNet  Google Scholar 

  32. Hughes T.J.R., Engel G., Mazzei L., Larson M.G. (2000) The continuous Galerkin method is locally conservative. J. Comput. Phys. 163(2):467–488

    Article  MATH  MathSciNet  Google Scholar 

  33. Jäger W., Kačur J. (1995) Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO Modél. Math. Anal. Numér. 29(5):605–627

    MATH  Google Scholar 

  34. Kačur J. (2001) Solution of degenerate convection–diffusion problems by the method of characteristics. SIAM J. Numer. Anal. 39(3):858–879

    Article  MathSciNet  Google Scholar 

  35. Karlsen K.H., Risebro N.H., Towers J.D. (2002) Upwind difference approximations for degenerate parabolic convection–diffusion equations with a discontinuous coefficient. IMA J. Numer. Anal. 22(4):623–664

    Article  MATH  MathSciNet  Google Scholar 

  36. Knabner, P., Otto, F.: Solute transport in porous media with equilibrium and nonequilibrium multiple-site adsorption: uniqueness of weak solutions. Nonlinear Anal. 42(3, Ser. A: Theory Methods), 381–403 (2000)

  37. Nochetto R.H., Schmidt A., Verdi C. (2000) A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comp. 69(229):1–24

    Article  MATH  MathSciNet  Google Scholar 

  38. Ohlberger M. (2001) A posteriori error estimates for vertex centered finite volume approximations of convection–diffusion–reaction equations. M2AN Math. Model. Numer. Anal. 35(2):355–387

    Article  MATH  MathSciNet  Google Scholar 

  39. Pop I.S., Yong W.A. (2002) A numerical approach to degenerate parabolic equations. Numer. Math. 92(2):357–381

    Article  MATH  MathSciNet  Google Scholar 

  40. Rulla J., Walkington N.J. (1996) Optimal rates of convergence for degenerate parabolic problems in two dimensions. SIAM J. Numer. Anal. 33(1):56–67

    Article  MATH  MathSciNet  Google Scholar 

  41. Vohralík, M.: Numerical methods for nonlinear elliptic and parabolic equations. Application to Flow Problems in Porous and Fractured media. Ph.D. dissertation, Université de Paris-Sud & Czech Technical University in Prague (2004). URL http://www.math.u-psud.fr/~vohralik/ Files/thesis_en.pdf

  42. Vohralík M. (2005) On the discrete Poincaré–Friedrichs inequalities for nonconforming approximations of the Sobolev space H 1. Numer. Funct. Anal. Optim. 26(7–8):925–952

    MATH  MathSciNet  Google Scholar 

  43. Vohralík M. (2006) Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes. M2AN Math. Model. Numer. Anal. 40(2):367–391

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Vohralík.

Additional information

This work was supported by the GdR MoMaS, CNRS-2439, ANDRA, BRGM, CEA, EdF, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eymard, R., Hilhorst, D. & Vohralík, M. A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems. Numer. Math. 105, 73–131 (2006). https://doi.org/10.1007/s00211-006-0036-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0036-z

Mathematics Subject Classification (2000)

Navigation