Skip to main content
Log in

On the numerical condition of a generalized Hankel eigenvalue problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The generalized eigenvalue problem \(\widetilde H y \,{=}\, \lambda H y\) with H a Hankel matrix and \(\widetilde H\) the corresponding shifted Hankel matrix occurs in number of applications such as the reconstruction of the shape of a polygon from its moments, the determination of abscissa of quadrature formulas, of poles of Padé approximants, or of the unknown powers of a sparse black box polynomial in computer algebra. In many of these applications, the entries of the Hankel matrix are only known up to a certain precision. We study the sensitivity of the nonlinear application mapping the vector of Hankel entries to its generalized eigenvalues. A basic tool in this study is a result on the condition number of Vandermonde matrices with not necessarily real abscissas which are possibly row-scaled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, J.M.: The Faber operator. In: Rational Approximation and Interpolation. Proceedings Tampa, Lecture Notes, vol. 1105. Springer, Berlin Heidelberg New York (1983)

  2. Baker, G.A., Graves-Morris, P.R.: Padé approximants.In: Encyclopedia of Mathematics, 2nd edn. Cambridge University Press, New York (1995)

  3. Beckermann, B.: On the numerical condition of polynomial bases: estimates for the condition number of Vandermonde, Krylov and Hankel matrices. Habilitationsschrift, Universität Hannover (1996)

  4. Beckermann B. (2000). The condition number of real Vandermonde, Krylov and positive definite Hankel matrices. Numer. Math. 85: 553–577

    Article  MATH  MathSciNet  Google Scholar 

  5. Beckermann B., Bourreau E. (1998). How to choose modified moments?. J. Comput. Appl. Math. 98: 81–98

    Article  MATH  MathSciNet  Google Scholar 

  6. Davis P.J. (1964). Triangle formulas in the complex plane. Math. Comput. 18(88): 569–577

    Article  MATH  Google Scholar 

  7. Davis P.J. (1977). Plane regions determined by complex moments. J. Approx. Theory 19(2): 5148–5153

    Article  Google Scholar 

  8. Ellacott, S.W., Saff, E.B.: Computing with the Faber transform. In: Rational Approximation and Interpolation. Proceedings Tampa, Lecture Notes, vol. 1105. Springer, Berlin Heidelberg New York, 412–418 (1983)

  9. Fischer H.-J. (1996). On the condition of orthogonal polynomials via modified moments. Z. Anal. Anwend. 15(1): 1–18

    Google Scholar 

  10. Gautschi W. (1982). On generating orthogonal polynomials. SIAM J. Sci. Stat. Comput. 3(3): 298–317

    Article  MathSciNet  Google Scholar 

  11. Gautschi W. (1986). On the sensitivity of orthogonal polynomials to perturbations in the moments. Numer. Math. 48: 369–382

    Article  MATH  MathSciNet  Google Scholar 

  12. Giesbrecht, M., Labahn, G., Lee, W.-S.: Symbolic-numeric sparse interpolation of multivariate polynomials. In: Proceedings of the 9th Rhine Workshop on Computer Algebra (2004)

  13. Giesbrecht, M., Labahn, G., Lee, W.-S.: Symbolic-numeric sparse polynomial interpolation in Chebyshev basis and trigonometric interpolation. In: Proceedings of Computer Algebra in Scientific Computing (CASC 2004), St. Petersburg, Russia, 195–206 (2004)

  14. Giesbrecht, M., Labahn, G., Lee, W.-S.: Symbolic-numeric sparse interpolation of multivariate polynomials. In: Proceedings of ISSAC’06. ACM, Genoa, 116–123 (2006)

  15. Golub G.H., Milanfar P., Varah J. (1999). A stable numerical method for inverting shape from moments. SIAM J. Sci. Comput. 21: 1222–1243

    Article  MathSciNet  Google Scholar 

  16. Saff E.B., Totik V. (1997). Logarithmic potentials with external fields. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  17. Wilkinson J.H. (1971). Modern error analysis. SIAM Rev. 13: 548–568

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Beckermann.

Additional information

B. Beckermann was supported in part by INTAS research network NaCCA 03-51-6637.

G. H. Golub was supported in part by DOE grant DE-FC-02-01ER41177.

G. Labahn was supported in part by NSERC and MITACS Canada grants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckermann, B., Golub, G.H. & Labahn, G. On the numerical condition of a generalized Hankel eigenvalue problem. Numer. Math. 106, 41–68 (2007). https://doi.org/10.1007/s00211-006-0054-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0054-x

Mathematics Subject Classification (2000)

Navigation