Skip to main content
Log in

Mesh-independence of semismooth Newton methods for Lavrentiev-regularized state constrained nonlinear optimal control problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A class of nonlinear elliptic optimal control problems with mixed control-state constraints arising, e.g., in Lavrentiev-type regularized state constrained optimal control is considered. Based on its first order necessary optimality conditions, a semismooth Newton method is proposed and its fast local convergence in function space as well as a mesh-independence principle for appropriate discretizations are proved. The paper ends by a numerical verification of the theoretical results including a study of the algorithm in the case of vanishing Lavrentiev-parameter. The latter process is realized numerically by a combination of a nested iteration concept and an extrapolation technique for the state with respect to the Lavrentiev-parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alibert J.-J. and Raymond J.-P. (1998). A Lagrange multiplier theorem for control problems with state constraints. Numer. Funct. Anal. Optim. 19(7–8): 697–704

    Article  MATH  MathSciNet  Google Scholar 

  2. Allgower E.L., Böhmer K., Potra F.A. and Rheinboldt W.C. (1986). A mesh-independence principle for operator equations and their discretizations. SIAM J. Numer. Anal. 23(1): 160–169

    Article  MATH  MathSciNet  Google Scholar 

  3. Alt W. (2001). Mesh-independence of the Lagrange–Newton method for nonlinear optimal control problems and their discretizations (Optimization with data perturbations, II). Ann. Oper. Res., 101: 101–117

    Article  MATH  MathSciNet  Google Scholar 

  4. Arada N., Casas E. and Tröltzsch F. (2002). Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23: 201–229

    Article  MATH  MathSciNet  Google Scholar 

  5. Bergounioux M. and Kunisch K. (2002). Primal–dual active set strategy for state-constrained optimal control problems. Comput. Optim. Appl. 22: 193–224

    Article  MATH  MathSciNet  Google Scholar 

  6. Casas E. (1986). Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24: 1309–1318

    Article  MATH  MathSciNet  Google Scholar 

  7. Casas E. (1993). Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31: 993–1006

    Article  MATH  MathSciNet  Google Scholar 

  8. Casas E. and Tröltzsch F. (1999). Second-order necessary optimality conditions for some state- constrained control problems of semilinear elliptic equations. Appl. Math. Optim. 39(2): 211–227

    Article  MATH  MathSciNet  Google Scholar 

  9. Casas E. and Tröltzsch F. (2002). Error estimates for the finite-element approximation of a semilinear elliptic control problem. Control Cybern. 31: 695–712

    MATH  Google Scholar 

  10. Casas E., Tröltzsch F. and Unger A. (2000). Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J. Control Optim. 38(5): 1369–1391 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen X., Nashed Z. and Qi L. (2000). Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38(4): 1200–1216 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  12. Deuflhard P. and Potra F.A. (1992). Asymptotic mesh independence of Newton–Galerkin methods via a refined Mysovskiĭ theorem. SIAM J. Numer. Anal. 29(5): 1395–1412

    Article  MATH  MathSciNet  Google Scholar 

  13. Dontchev A.L., Hager W.W. and Veliov V.M. (2000). Uniform convergence and mesh independence of Newton’s method for discretized variational problems. SIAM J. Control Optim. 39(3): 961–980 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  14. Facchinei, F., Pang, J.-S.: Finite-dimensional variational inequalities and complementarity problems, vol. II. Springer Series in Operations Research. Springer, New York (2003)

  15. Hackbusch W. (1985). Multigrid methods and applications, vol. 4. Springer Series in Computational Mathematics. Springer, Berlin

    Google Scholar 

  16. Hintermüller, M.: Mesh-independence and fast local convergence of a primal–dual active set method for mixed control-state constrained elliptic control problems. ANZIAM J. (2007) (to appear)

  17. Hintermüller M., Ito K. and Kunisch K. (2003). The primal–dual active set strategy as a semismooth newton method. SIAM J. Optim. 13: 865–888

    Article  MATH  Google Scholar 

  18. Hintermüller M. and Kunisch K. (2006). Feasible and non-interior path-following in constrained minimization with low multiplier regularity. SIAM J. Control Optim. 45: 1198–1221

    Article  MATH  MathSciNet  Google Scholar 

  19. Hintermüller, M., Ring, W.: A level set approach for the solution of a state constrained optimal control problem. Num. Math. (2004)

  20. Hintermüller M. and Ulbrich M. (2004). A mesh independence result for semismooth Newton methods. Math. Program. 101: 151–184

    Article  MATH  MathSciNet  Google Scholar 

  21. Ioffe A.D. (1979). Necessary and sufficient conditions for a local minimum. III. Second order conditions and augmented duality. SIAM J. Control Optim. 17(2): 266–288

    Article  MATH  MathSciNet  Google Scholar 

  22. Kummer B. (2000). Generalized Newton and NCP methods: convergence, regularity, actions. Discuss. Math. Diff. Incl. 20: 209–244

    MATH  MathSciNet  Google Scholar 

  23. Lions, J.-L.: Some aspects of the optimal control of distributed parameter systems. Society for Industrial and Applied Mathematics, Philadelphia. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 6. (1972)

  24. Meyer C., Rösch A. and Tröltzsch F. (2006). Optimal control problems of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33: 209–228

    Article  MATH  MathSciNet  Google Scholar 

  25. Prüfert, U., Tröltzsch, F., Weiser, M.: The convergence of an interior point method for an elliptic control problem with mixed control-state constraints. Comput. Optim. Appl. (to appear)

  26. Rösch, A., Tröltzsch, F.: Existence of regular Lagrange multipliers for a nonlinear elliptic optimal control problem with pointwise control-state constraints (Submitted)

  27. Tröltzsch F. (2005). Optimale Steuerung partieller Differentialgleichungen. Vieweg, Wiesbaden

    MATH  Google Scholar 

  28. Tröltzsch F. (2005). Regular Lagrange multipliers for control problems with mixed pointwise control-state constraints. SIAM J. Optim. 15: 616–634

    Article  MATH  Google Scholar 

  29. Weiser M., Schiela A. and Deuflhard P. (2005). Asymptotic mesh independence of Newton’s method revisited. SIAM J. Numer. Anal. 42(5): 1830–1845 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wright S.J. (1997). Primal–dual Interior-Point Methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hintermüller.

Additional information

M. Hintermüller acknowledges support by the Austrian Science Fund FWF under START-program Y305 “Interfaces and Free Boundaries”.

F. Tröltzsch and I. Yousept acknowledge support through DFG Research Center “Mathematics for Key Technologies” (FZT 86) in Berlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hintermüller, M., Tröltzsch, F. & Yousept, I. Mesh-independence of semismooth Newton methods for Lavrentiev-regularized state constrained nonlinear optimal control problems. Numer. Math. 108, 571–603 (2008). https://doi.org/10.1007/s00211-007-0134-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0134-6

Mathematics Subject Classification (2000)

Navigation