Skip to main content
Log in

Stability of a Cartesian grid projection method for zero Froude number shallow water flows

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper a Godunov-type projection method for computing approximate solutions of the zero Froude number (incompressible) shallow water equations is presented. It is second-order accurate and locally conserves height (mass) and momentum. To enforce the underlying divergence constraint on the velocity field, the predicted numerical fluxes, computed with a standard second order method for hyperbolic conservation laws and applied to an auxiliary system, are corrected in two steps. First, a MAC-type projection adjusts the advective velocity divergence. In a second projection step, additional momentum flux corrections are computed to obtain new time level cell-centered velocities, which satisfy another discrete version of the divergence constraint. The scheme features an exact and stable second projection. It is obtained by a Petrov–Galerkin finite element ansatz with piecewise bilinear trial functions for the unknown height and piecewise constant test functions. The key innovation compared to existing finite volume projection methods is a correction of the in-cell slopes of the momentum by the second projection. The stability of the projection is proved using a generalized theory for mixed finite elements. In order to do so, the validity of three different inf-sup conditions has to be shown. The results of preliminary numerical test cases demonstrate the method’s applicability. On fixed grids the accuracy is improved by a factor four compared to a previous version of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren A.S., Bell J.B., Colella P., Howell L.H., Welcome M.L.: A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations. J. Comput. Phys. 142(1), 1–46 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Almgren A.S., Bell J.B., Crutchfield W.Y.: Approximate projection methods: Part I. inviscid analysis. SIAM J. Sci. Comput. 22(4), 1139–1159 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Almgren A.S., Bell J.B., Szymczak W.G.: A numerical method for the incompressible Navier–Stokes equations based on an approximate projection. SIAM J. Sci. Comput. 17(2), 358–369 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Angermann L.: Node-centered finite volume schemes and primal-dual mixed formulations. Commun. Appl. Anal. 7(4), 529–566 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Babuška I.: Error-bounds for finite element method. Numerische Mathematik 16, 322–333 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bell J.B., Colella P., Glaz H.M.: A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85(2), 257–283 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bell J.B., Marcus D.L.: A second-order projection method for variable-density flows. J. Comput. Phys. 101, 334–348 (1992)

    Article  MATH  Google Scholar 

  8. Bernardi C., Canuto C., Maday Y.: Generalized inf-sup conditions for the Chebyshev spectral approximation of the Stokes problem. SIAM J Numer Anal 25(6), 1237–1271 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Braess D.: Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie, 3rd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  10. Brezzi F.: On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO Analyse Numérique 8, 129–151 (1974)

    MathSciNet  Google Scholar 

  11. Chorin A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22(104), 745–762 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  12. Courant R., Friedrichs K.O., Lewy H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen 100, 32–74 (1928)

    Article  MATH  MathSciNet  Google Scholar 

  13. Geratz, K.J.: Erweiterung eines Godunov-Typ-Verfahrens für zwei-dimensionale kompressible Strömungen auf die Fälle kleiner und verschwindender Machzahl. PhD dissertation, Rheinisch-Westfälische Technische Hochschule Aachen (1997)

  14. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order, 2 edn. Springer, Heidelberg (1983)

    MATH  Google Scholar 

  15. Girault V., Raviart P.A.: Finite Element Methods for Navier–Stokes Equations, Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)

    Google Scholar 

  16. Gresho P.M.: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory. Int J Numer Methods Fluids 11(5), 587–620 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gresho P.M., Chan S.T.: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 2: Implementation. Int. J. Numer. Methods Fluids 11(5), 621–659 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Guermond J.L., Minev P., Shen J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195(44–47), 6011–6045 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Harlow F.H., Welch J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)

    Article  Google Scholar 

  20. Klainerman S., Majda A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  21. Klein R.: Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics I: one-dimensional flow. J. Comput. Phys. 121, 213–237 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. LeVeque R.J.: Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, vol. 31. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  23. Minion M.L.: A projection method for locally refined grids. J. Comput. Phys. 127(1), 158–178 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Munz C.D., Roller S., Klein R., Geratz K.J.: The extension of incompressible flow solvers to the weakly compressible regime. Comput. Fluids 32(2), 173–196 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nicolaïdes R.A.: Existence, uniqueness and approximation for generalized saddle point problems. SIAM J. Numer. Anal. 19(2), 349–357 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  26. Oevermann M., Klein R.: A cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces. J. Comput. Phys. 219(2), 749–769 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Osher S.: Convergence of generalized MUSCL schemes. SIAM J. Numer. Anal. 22(5), 947–961 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  28. Schneider T., Botta N., Geratz K.J., Klein R.: Extension of finite volume compressible flow solvers to multi-dimensional, variable density zero Mach number flows. J. Comput. Phys. 155, 248–286 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Schochet S.: Fast singular limits of hyperbolic PDEs. J. Differ. Equ. 114(2), 476–512 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  30. Schochet S.: The mathematical theory of low Mach number flows. RAIRO Modélisation Mathématique et Analyse Numérique 39(3), 441–458 (2005)

    MATH  MathSciNet  Google Scholar 

  31. Schulz-Rinne, C.W.: The Riemann problem for two-dimensional gas dynamics and new limiters for high-order schemes. PhD dissertation, Eidgenössische Technische Fachhochschule (ETH) Zürich. Diss. ETH No. 10297 (1993)

  32. Shu C.W., Osher S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  33. Strang G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  34. Süli E.: Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes. SIAM J. Numer. Anal. 28(5), 1419–1430 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  35. Temam R.: Une méthode d’approximation de la solution des équations de Navier–Stokes. Bulletin de la Société Mathématique de France 96, 115–152 (1968)

    MATH  MathSciNet  Google Scholar 

  36. Thomas J.M., Trujillo D.: Mixed finite volume methods. Int. J. Numer. Methods Eng. 46(9), 1351–1366 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  37. van Albada G.D., van Leer B., Roberts W.W. Jr.: A comparative study of computational methods in cosmic gas dynamics. Astron. Astrophys. 108(1), 76–84 (1982)

    MATH  Google Scholar 

  38. van der Vorst H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MATH  Google Scholar 

  39. van Kan J.: A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7(3), 870–891 (1986)

    Article  MATH  Google Scholar 

  40. van Leer B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  Google Scholar 

  41. Vater, S.: A new projection method for the zero Froude number shallow water equations. PIK Report 97, Potsdam Institute for Climate Impact Research (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Vater.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vater, S., Klein, R. Stability of a Cartesian grid projection method for zero Froude number shallow water flows. Numer. Math. 113, 123–161 (2009). https://doi.org/10.1007/s00211-009-0224-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0224-8

Mathematics Subject Classification (2000)

Navigation