Skip to main content
Log in

Piecewise linear approximations in nonconvex nonsmooth optimization

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present a bundle type method for minimizing nonconvex nondifferentiable functions of several variables. The algorithm is based on the construction of both a lower and an upper polyhedral approximation of the objective function. In particular, at each iteration, a search direction is computed by solving a quadratic program aiming at maximizing the difference between the lower and the upper model. A proximal approach is used to guarantee convergence to a stationary point under the hypothesis of weak semismoothness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astorino A., Fuduli A.: Nonsmooth optimization techniques for semi-supervised classification. IEEE Trans. Pattern Anal. Mach. Intell. 29, 2135–2142 (2007)

    Article  Google Scholar 

  2. Burke J., Lewis A., Overton L.: A robust gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM J. Optim. 15, 751–779 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cheney E.W., Goldstein A.A.: Newton’s method for convex programming and Tchebycheff approximation. Numer. Math. 1, 253–268 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  4. Clarke F.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  5. Demyanov V.F., Malozemov V.N.: Introduction to Minimax. Wiley, New York (1974)

    Google Scholar 

  6. Demyanov V.F., Rubinov A.: Quasidifferential Calculus. Optimization Software Inc., New York (1986)

    MATH  Google Scholar 

  7. Fuduli A., Gaudioso M., Giallombardo G.: Minimizing nonconvex nonsmooth functions via cutting planes and proximity control. SIAM J. Optim. 14, 743–756 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fuduli A., Gaudioso M., Giallombardo G.: A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization. Optim. Methods Softw. 19, 89–102 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gaudioso M., Giallombardo G., Miglionico G.: An incremental method for solving convex finite min-max problems. Math. Oper. Res. 31, 173–187 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goffin J.-L., Gondzio J., Sarkissian R., Vial J.-P.: Solving nonlinear multicommodity flows problems by the analytic center cutting plane method. Math. Program. 76, 131–154 (1997)

    MathSciNet  Google Scholar 

  11. Goldfarb D., Idnani A.: A numerically stable dual method for solving strictly convex quadratic program. Math. Program. 27, 1–33 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hare W., Sagastizábal C.: Computing proximal point of nonconvex functions. Math. Program. 116, 221–258 (2008)

    Article  Google Scholar 

  13. Helmberg, C., Oustry, F. : Bundle methods to minimize the maximum eigenvalue function. In: Wolkowicz, H., Saigal, R.,Vandenberghe,L. (eds.) Handobook of Semidefinite Programming, pp. 307–337. Kluwer’s International Series, Kluwer Academic Publishers, Boston (2000)

    Google Scholar 

  14. Hiriart-Urruty, J., Lemaréchal, C.: Convex analysis and minimization algorithms Vol. I–II. Springer-Verlag, Berlin (1993)

  15. Kelley J.E.: The cutting-plane method for solving convex programs. J. SIAM 8, 703–712 (1960)

    MathSciNet  Google Scholar 

  16. Kiwiel K.C.: An aggregate subgradient method for nonsmooth convex minimization. Math. Program. 27, 320–341 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kiwiel K.C.: Proximal level bundle methods for convex nondifferentiable optimization, saddle-point problems and variational inequalities. Math. Program. 69, 89–109 (1995)

    MathSciNet  Google Scholar 

  18. Lemaréchal, C.: An extension of Davidon methods to nondifferentiable problems. In: Balinski, M., Wolfe, P. (eds.) Nondifferentiable Optimization, vol. 3, pp. 95–109. Mathematical Programming Study. North-Holland, Amsterdam (1975)

  19. Lemaréchal, C.: A view of line-searches. In: Auslender, W.O.A., Stoer, J. (eds.) Optimization and Optimal Control, vol. 30 of Lecture notes in control and information sciences, pp. 59–78. Springer, Berlin (1981)

  20. Lemaréchal C., Nemirovskii A., Nesterov Y.: New variants of bundle methods. Math. Program. 69, 111–147 (1995)

    Article  Google Scholar 

  21. Lukšan, L., Vlček, J.: Test problems for nonsmooth unconstrained and linearly constrained optimization. Tech. Rep. 798, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2000)

  22. Lukšan, L., Vlček, J.: Variable metric methods for nonsmooth optimization. Tech. Rep. 837, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2001)

  23. Mäkelä M., Neittaanmäki P.: Nonsmooth Optimization. World Scientific, New Jersey (1992)

    MATH  Google Scholar 

  24. Mifflin R.: An algorithm for constrained optimization with semismooth functions. Math. Oper. Res. 2, 191–207 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  25. Polak E.: On the mathematical foundations of nondifferentiable optimization in engineering design. SIAM Rev. 29, 21–89 (1987)

    Article  MathSciNet  Google Scholar 

  26. Rockafellar R.T.: Convex Analysis. Princeton University Press, New Jersey (1970)

    MATH  Google Scholar 

  27. Schramm H., Zowe J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 1, 121–152 (1992)

    Article  MathSciNet  Google Scholar 

  28. Shor N.: Minimization Methods for Nondifferentiable Functions. Springer, Berlin (1985)

    Google Scholar 

  29. Vlček, J., Luksǎn: Globally convergent variable metric method for nonconvex nondifferentiable unconstrained minimization. J. Optim. Theory Appl. 111, 407–430 (2001)

  30. Wolfe, P.: A method of conjugate subgradients for minimizing nondifferentiable functions. In: Balinski, M., Wolfe, P. (eds.) Nondifferentiable Optimization, vol. 3, pp. 145–173. Mathematical Programming Study, North-Holland, Amsterdam (1975)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gaudioso.

Additional information

This research has been partially supported by the Italian “Ministero dell’Istruzione, dell’Università e della Ricerca”, under PRIN project Ottimizzazione Non Lineare e Applicazioni (20079PLLN7_003).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaudioso, M., Gorgone, E. & Monaco, M.F. Piecewise linear approximations in nonconvex nonsmooth optimization. Numer. Math. 113, 73–88 (2009). https://doi.org/10.1007/s00211-009-0228-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0228-4

Mathematics Subject Classification (2000)