Skip to main content
Log in

Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this article, we derive uniform admissibility and observability properties for the finite element space semi-discretizations of \({\ddot u+A_0 u=0 }\), where A 0 is an unbounded self-adjoint positive definite operator with compact resolvent. To address this problem, we present a new spectral approach based on several spectral criteria for admissibility and observability of such systems. Our approach provides very general admissibility and observability results for finite element approximation schemes of \({\ddot u+A_{0}u =0}\), which stand in any dimension and for any regular mesh (in the sense of finite elements). Our results can be combined with previous works to derive admissibility and observability properties for full discretizations of \({\ddot u+A_0 u=0}\). We also present applications of our results to controllability and stabilization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banks, H.T., Ito, K., Wang, C.: Exponentially stable approximations of weakly damped wave equations. In: Estimation and control of distributed parameter systems (Vorau, 1990) Internat. Ser. Numer. Math., vol. 100, pp. 1–33. Birkhäuser, Basel (1991)

  2. Bardos C., Lebeau G., Rauch J.: Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burq N., Gérard P.: Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math. 325(7), 749–752 (1997)

    MATH  Google Scholar 

  4. Burq N., Zworski M.: Geometric control in the presence of a black box. J. Am. Math. Soc. 17(2), 443–471 (2004) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  5. Castro C., Micu S.: Boundary controllability of a linear semi-discrete 1-d wave equation derived from a mixed finite element method. Numer. Math. 102(3), 413–462 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Castro C., Zuazua E.: Low frequency asymptotic analysis of a string with rapidly oscillating density. SIAM J. Appl. Math. 60(4), 1205–1233 (2000) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  7. Castro C., Zuazua E.: Concentration and lack of observability of waves in highly heterogeneous media. Arch. Ration. Mech. Anal. 164(1), 39–72 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dáger, R., Zuazua, E.: Wave propagation, observation and control in 1−d flexible multi-structures. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 50. Springer, Berlin (2006)

  9. Ervedoza, S.: Observability of the mixed finite element method for the 1d wave equation on nonuniform meshes. ESAIM Control Optim. Calc. Var. (2009, to appear)

  10. Ervedoza, S.: Admissibility and observability for Schrödinger systems: applications to finite element approximation schemes. Asymptot. Anal. (2009, to appear)

  11. Ervedoza, S.: Observability in arbitrary small time for discrete approximations of conservative systems (2009, preprint)

  12. Ervedoza S., Zheng C., Zuazua E.: On the observability of time-discrete conservative linear systems. J. Funct. Anal. 254(12), 3037–3078 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ervedoza, S., Zuazua, E.: Uniform exponential decay for viscous damped systems. To appear in Proc. of Siena Phase Space Analysis of PDEs 2007. Special issue in honor of Ferrucio Colombini

  14. Ervedoza S., Zuazua E.: Perfectly matched layers in 1-d: Energy decay for continuous and semi- discrete waves. Numer. Math. 109(4), 597–634 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ervedoza S., Zuazua E.: Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pures Appl. 91, 20–48 (2009)

    MATH  MathSciNet  Google Scholar 

  16. Glowinski R.: Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation. J. Comput. Phys. 103(2), 189–221 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Glowinski R., Li C.H., Lions J.-L.: A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: description of the numerical methods. Jpn. J. Appl. Math. 7(1), 1–76 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Haraux, A.: Séries lacunaires et contrôle semi-interne des vibrations d’une plaque rectangulaire. J. Math. Pures Appl. (9), 68(4):457–465 (1990), 1989

    Google Scholar 

  19. Haraux A.: Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Port. Math. 46(3), 245–258 (1989)

    MATH  MathSciNet  Google Scholar 

  20. Imanuvilov O.Y.: On Carleman estimates for hyperbolic equations. Asymptot. Anal. 32(3-4), 185–220 (2002)

    MATH  MathSciNet  Google Scholar 

  21. Infante J.A., Zuazua E.: Boundary observability for the space semi discretizations of the 1-d wave equation. Math. Model. Num. Ann. 33, 407–438 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ingham A.E.: Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41(1), 367–379 (1936)

    Article  MathSciNet  Google Scholar 

  23. Komornik, V.: Exact controllability and stabilization. RAM: Research in Applied Mathematics. Masson, Paris (1994). [The multiplier method]

  24. Lebeau, G.: Équations des ondes amorties. Séminaire sur les Équations aux Dérivées Partielles, 1993–1994,École Polytech (1994)

  25. Lions, J.-L.: Contrôlabilité exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1. Contrôlabilité exacte, vol. RMA 8. Masson (1988)

  26. Liu K.: Locally distributed control and damping for the conservative systems. SIAM J. Control Optim. 35(5), 1574–1590 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Macià, F.: The effect of group velocity in the numerical analysis of control problems for the wave equation. In: Mathematical and Numerical Aspects of Wave Propagation—WAVES, pp. 195–200. Springer, Berlin (2003)

  28. Miller L.: Controllability cost of conservative systems: resolvent condition and transmutation. J. Funct. Anal. 218(2), 425–444 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Miller, L.: Private communication (2009)

  30. Münch, A., Pazoto, A.F.: Uniform stabilization of a viscous numerical approximation for a locally damped wave equation. ESAIM Control Optim. Calc. Var. 13(2), 265–293 (2007) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  31. Negreanu M., Matache A.-M., Schwab C.: Wavelet filtering for exact controllability of the wave equation. SIAM J. Sci. Comput. 28(5), 1851–1885 (2006) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  32. Negreanu M., Zuazua E.: Convergence of a multigrid method for the controllability of a 1-d wave equation. C. R. Math. Acad. Sci. Paris 338(5), 413–418 (2004)

    MATH  MathSciNet  Google Scholar 

  33. Osses A.: A rotated multiplier applied to the controllability of waves, elasticity, and tangential Stokes control. SIAM J. Control Optim. 40(3), 777–800 (2001) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ramdani K., Takahashi T., Tenenbaum G., Tucsnak M.: A spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint generator. J. Funct. Anal. 226(1), 193–229 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ramdani K., Takahashi T., Tucsnak M.: Uniformly exponentially stable approximations for a class of second order evolution equations—application to LQR problems. ESAIM Control Optim. Calc. Var. 13(3), 503–527 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Raviart, P.-A., Thomas, J.-M.: Introduction à l’analyse numérique des équations aux dérivées partielles. Collection Mathématiques Appliquées pour la Maitrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris (1983)

  37. Tcheugoué Tebou L.R., Zuazua E.: Uniform boundary stabilization of the finite difference space discretization of the 1d wave equation. Adv. Comput. Math. 26(1-3), 337–365 (2007)

    Article  MathSciNet  Google Scholar 

  38. Tcheugoué Tébou L.R., Zuazua E.: Uniform exponential long time decay for the space semi- discretization of a locally damped wave equation via an artificial numerical viscosity. Numer. Math. 95(3), 563–598 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  39. Trefethen L.N.: Group velocity in finite difference schemes. SIAM Rev. 24(2), 113–136 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  40. Tucsnak, M., Weiss, G.: Observation and control for operator semigroups. Advanced Texts, vol. XI. Springer, Birkhäuser (2009)

  41. Weiss G.: Admissibility of unbounded control operators. SIAM J. Control Optim. 27(3), 527–545 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  42. Young R.M.: An Introduction to Nonharmonic Fourier Series, 1st edn. Academic Press Inc., San Diego (2001)

    MATH  Google Scholar 

  43. Zhang X.: Explicit observability estimate for the wave equation with potential and its application. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456(1997), 1101–1115 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  44. Zuazua E.: Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pures Appl. (9) 78(5), 523–563 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  45. Zuazua E.: Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47(2), 197–243 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Ervedoza.

Additional information

The author was partially supported by the “Agence Nationale de la Recherche” (ANR), Project C-QUID, number BLAN-3-139579.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ervedoza, S. Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes. Numer. Math. 113, 377–415 (2009). https://doi.org/10.1007/s00211-009-0235-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0235-5

Mathematics Subject Classification (2000)

Navigation