Skip to main content
Log in

Analysis of the projected coupled cluster method in electronic structure calculation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The electronic Schrödinger equation plays a fundamental role in molcular physics. It describes the stationary nonrelativistic behaviour of an quantum mechanical N electron system in the electric field generated by the nuclei. The (Projected) Coupled Cluster Method has been developed for the numerical computation of the ground state energy and wave function. It provides a powerful tool for high accuracy electronic structure calculations. The present paper aims to provide a rigorous analytical treatment and convergence analysis of this method. If the discrete Hartree Fock solution is sufficiently good, the quasi-optimal convergence of the projected coupled cluster solution to the full CI solution is shown. Under reasonable assumptions also the convergence to the exact wave function can be shown in the Sobolev H 1-norm. The error of the ground state energy computation is estimated by an Aubin Nitsche type approach. Although the Projected Coupled Cluster method is nonvariational it shares advantages with the Galerkin or CI method. In addition it provides size consistency, which is considered as a fundamental property in many particle quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bach V., Lieb E.H., Loss M., Solovej J.P.: There are no unfilled shells in unrestricted Hartree–Fock theory. Phys. Rev. Lett. 72, 2981–2983 (1994)

    Article  Google Scholar 

  2. Bangert, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag Basel (2003)

  3. Bartlett R.J., Musial M.: Coupled-cluster theory in quantum chemistry. Rev. Modern Phys. 79(1), 291–352 (2007)

    Article  Google Scholar 

  4. Cancès, E., Defranceschi, M., Kutzelnigg, W., Le Bris, C., Maday, Y.: Computational chemistry: a primer. In: Handbook of Numerical Analysis, vol. X. North-Holland, Amsterdam (2003)

  5. Ciarlet G.P.: The finite element method for elliptic problems. Studies in Mathematics and its Application. North Holland, Amsterdam (1978)

    Google Scholar 

  6. Ciarlet G.P.: Handbook of numerical analysis. Computational Chemistry, vol. X. North-Holland, Amsterdam (2003)

    Google Scholar 

  7. Crawford T.D., Schaefer H.F. III: An introduction to coupled cluster theory for computational chemists. Rev. Comput. Chem. 14, 33–136 (2000)

    Article  Google Scholar 

  8. Flad, H.-J., Hackbusch, W., Schneider, R.: Best N term approximation for electronic wavefunctions I One electron reduced density matrix. M2AN Math. Model. Numer. Anal. 40 (2006)

  9. Flad, H.-J., Hackbusch, W., Schneider, R.: Best N term approximation for electronic wavefunctions II, Jastrow factors, MIS, Leipzig Preprint 80/2005 to appear M2AN Math. Model. Numer. Anal.

  10. Fournais S., Thomas-Ostenhof M., Thomas-Ostenhof T., Ostergaaard Sorensen T.: Sharp regularity results for Coulombic many-electron wave functions. Comm. Math. Phys. 255, 183–227 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Friesecke G.: The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions. Arch. Rat. Mech. Anal. 169, 35–71 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Helgaker T., Jørgensen P., Olsen J.: Molecular Electronic-Structure Theory. Wiley, New York (2002)

    Google Scholar 

  13. Hampel C., Peterson K., Werner H.-J.: A comparison of efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD) and Brückner coupled cluster (BCCD) methods. Chem. Phys. Lett. 190, 1–12 (1992)

    Article  Google Scholar 

  14. Kato T.: On the eigenfunctions of many-particle systems in quantum mechanics. Comm. Pure Appl. Math. 10, 151–177 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Klopper R12 methods, Gaussian gemninals. In: Modern Methods and Algorithms of Quantum Chemistry. Ed. Grothendorst. Proceedings Winterschool, NIC Series, vol. 3. Jülich (2000)

  16. Kümmel H., Lührmann K.-H., Zaboglitzky J.G.: Many fermion theory in exps (or coupled cluster) form. Phys. Rep. 36(1), 1–63 (1978)

    Article  Google Scholar 

  17. Kutzelnigg W.: Theory of the expansion of wave functions in a Gaussian basis. Int. J. Quant. Chem. 51, 447–463 (1994)

    Article  Google Scholar 

  18. Kutzelnigg W.: Eror analyis and improvement of coupled cluster theory. Theor. Chimica Acta 80, 349–386 (1991)

    Article  Google Scholar 

  19. Kutzelnigg W., Morgan J.D. III: Rates of convergence of the partial wave expansions for atomic correlation energies. J. Chem. Phys. Letter 195, 77 (1992)

    Article  Google Scholar 

  20. Le Bris C., Lions P.-L.: From atoms to crystals: a mathematical journey. Bull. AMS 42, 291–363 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Levin M.: Solutions of the Multiconfiuration equations in qunatum chemistry. Arch. Rational Mech. Anal. 171, 83–114 (2004)

    Article  Google Scholar 

  22. Lieb E.H., Simon B.: The Hartree–Fock theory for Coulomb systems. Comm. Math. Phys. 53, 185–194 (1977)

    Article  MathSciNet  Google Scholar 

  23. Lions P.-L.: Solutions of Hartree–Fock equations for Coulomb systems. Comm. Math. Phys. 109, 33–97 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schütz M., Werner H.-J.: Linear scaling local CCSD. J. Chem. Phys. 114, 661–681 (2001)

    Article  Google Scholar 

  25. Reed M., Simon B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, San Diego (1978)

    MATH  Google Scholar 

  26. Simon B.: Schrödinger operators in the 20th century. J. Math. Phys. 41, 3523–3555 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Szabo A., Ostlund N.S.: Modern Quantum Chemistry. Dover Publications, New York (1996)

    Google Scholar 

  28. Yserentant H.: On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98, 731–759 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yserentant H.: Sparse grid approximation for the numerical solution of the electronic Schrödinger equation. Numer. Math. 105, 381–389 (2005)

    Article  MathSciNet  Google Scholar 

  30. Yserentant, H.: On the electronic Schrödinger equation. Lecture Notes, Preprint Universität Tübingen (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold Schneider.

Additional information

This research was supported by DFG priority program SSP 1145 Modern and universal first-principles methods for many-electron systems in chemistry and physics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, R. Analysis of the projected coupled cluster method in electronic structure calculation. Numer. Math. 113, 433–471 (2009). https://doi.org/10.1007/s00211-009-0237-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0237-3

Mathematics Subject Classification (2000)

Navigation