Skip to main content
Log in

Generalized polar coordinates on Lie groups and numerical integrators

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Motivated by developments in numerical Lie group integrators, we introduce a family of local coordinates on Lie groups denoted generalized polar coordinates. Fast algorithms are derived for the computation of the coordinate maps, their tangent maps and the inverse tangent maps. In particular we discuss algorithms for all the classical matrix Lie groups and optimal complexity integrators for n-spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bridges T.J., Reich S.: Computing Lyapunov exponents on a Stiefel manifold. Physica D 156, 219–238 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Calvo M.P., Iserles A., Zanna A.: Numerical Solution of Isospectral Flows. Math. Comput. 66, 1461–1486 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Casas F., Owren B.: Cost efficient Lie group integrators in the RKMK class. BIT Numer. Math. 43(4), 723–742 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Celledoni E., Fiori S.: Neural learning by geometric integration of reduced ‘rigid-body’equations. J. Comput. Appl. Math. 172(2), 247–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Celledoni E., Owren B.: A class of intrinsic schemes for orthogonal integration. SIAM J. Numer. Anal. 40(6), 2069–2084 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Celledoni E., Owren B.: On the implementation of Lie group methods on the Stiefel manifold. Numer. Algorithms 32(2–4), 163–183 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chefd’Hotel C., Tschumperle D., Deriche R., Faugeras O.: Regularizing flows for constrained matrix-valued images. J. Math. Imaging Vis. 20(1), 147–162 (2004)

    Article  MathSciNet  Google Scholar 

  8. Chu, M.T.: Inverse eigenvalue problems: theory and applications. A series of lectures presented at IRMA, CRN, Bari, Italy, June 2001

  9. Chu M.T., Golub G.H.: Structured inverse eigenvalue problems. Acta Numer. 1–71 (2003)

  10. Crouch P.E., Grossman R.: Numerical integration of ordinary differential equations on manifolds. J. Nonlinear Sci. 3, 1–33 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dieci L., Russel R.D., Van Vleck E.S.: On the computation of Lyapunov exponents for continuous dynamical systems. SIAM J. Numer. Anal. 34, 402–423 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dieci L., Van Vleck E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Appl. Numer. Math. 17, 275–291 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dressler U.: Symmetry properties of the Lyapunov spectra of a class of dissipative dynamical systems with viscous damping. Phys. Rev. A 39(4), 2103–2109 (1988)

    Article  Google Scholar 

  14. Engø K.: On the construction of geometric integrators in the RKMK class. BIT 40(1), 41–61 (2000)

    Article  MathSciNet  Google Scholar 

  15. Feng K., Shang Z.-j.: Volume-preserving algorithms for source-free dynamical systems. Numer. Math. 71(4), 451–463 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fulton C., Pearson D., Pruess S.: Computing the spectral function for singular Sturm–Liouville problems. J. Comput. Appl. Math. 176(1), 131–162 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Helgason S.: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York (1978)

    MATH  Google Scholar 

  18. Helmke U., Hüper K., Moore J.B., Schulte-Herbrüggen T.: Gradient flows computing the C-numerical range with applications in NMR spectroscopy. J. Glob. Optim. 23(3), 283–308 (2002)

    Article  MATH  Google Scholar 

  19. Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  20. Iserles A., Munthe-Kaas H.Z., Nørsett S.P., Zanna A.: Lie-group methods. Acta Numer. 9, 215–365 (2000)

    Article  Google Scholar 

  21. Iserles A., Nørsett S.P.: On the solution of linear differential equations in Lie groups. Phil. Trans. R. Soc. A 357, 983–1019 (1999)

    Article  MATH  Google Scholar 

  22. Krogstad S.: A low complexity Lie group method on the Stiefel manifold. BIT 43(1), 107–122 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lee S., Choi M., Kim H., Park F.C.: Geometric direct search algorithms for image registration. IEEE Trans. Image Process. 16(9), 2215 (2007)

    Article  MathSciNet  Google Scholar 

  24. Lee, T., McClamroch, N.H., Leok, M.: A Lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3D pendulum. In: Control Applications, 2005. CCA 2005. Proceedings of 2005 IEEE Conference, pp. 962–967 (2005)

  25. Lewis D., Nigam N.: Geometric integration on spheres and some interesting applications. J. Comput. Appl. Math. 151(1), 141–170 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lewis D., Simo J.C.: Conserving algorithms for the dynamics of Hamiltonian systems of Lie groups. J. Nonlinear. Sci. 4, 253–299 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Malham S., Niesen J.: Evaluating the Evans function: order reduction in numerical methods. Math. Comput. 77(261), 159 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Malham S.J.A., Wiese A.: Stochastic Lie group integrators. SIAM J. Sci. Comput. 30(2), 597–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Munthe-Kaas H.: Runge–Kutta methods on Lie groups. BIT 38(1), 92–111 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Munthe-Kaas H.: High order Runge–Kutta methods on manifolds. Appl. Numer. Math. 29, 115–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Munthe-Kaas H., Quispel G.R.W., Zanna A.: Generalized polar decompositions on Lie groups with involutive automorphisms. Found. Comput. Math. 1(3), 297–324 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Owren B.: Order conditions for commutator-free Lie group methods. J. Phys. A 39(19), 5585–5599 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Owren B., Marthinsen A.: Runge–Kutta methods adapted to manifolds and based on rigid frames. BIT 39(1), 116–142 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Owren B., Marthinsen A.: Integration methods based on canonical coordinates of the second kind. Numer. Math. 87(4), 763–790 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Plumbley M.D.: Geometrical methods for non-negative ICA: manifolds, Lie groups and toral subalgebras. Neurocomputing 67, 161–197 (2005)

    Article  Google Scholar 

  36. Smith, S.T.: Optimization techniques on Riemaniann manifolds. In: Bloch, A. (ed.) Hamiltonian and Gradient Flows, Algorithms and Control, volume 3 of Fields Institute Communications, pp. 113–136. AMS (1994)

  37. Zanna A., Munthe-Kaas H.Z.: Generalized polar decompositions for the approximation of the matrix exponential. SIAM J. Matrix Anal. Appl. 23(3), 840–862 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang S.Y., Deng Z.C.: Group preserving schemes for nonlinear dynamic system based on RKMK methods. Appl. Math. Comput. 175(1), 497–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Zanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krogstad, S., Munthe-Kaas, H.Z. & Zanna, A. Generalized polar coordinates on Lie groups and numerical integrators. Numer. Math. 114, 161–187 (2009). https://doi.org/10.1007/s00211-009-0255-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0255-1

Mathematics Subject Classification (2000)

Navigation