Skip to main content
Log in

Optimal control of systems with discontinuous differential equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we discuss the problem of verifying and computing optimal controls of systems whose dynamics is governed by differential systems with a discontinuous right-hand side. In our work, we are motivated by optimal control of mechanical systems with Coulomb friction, which exhibit such a right-hand side. Notwithstanding the impressive development of nonsmooth and set-valued analysis, these systems have not been closely studied either computationally or analytically. We show that even when the solution crosses and does not stay on the discontinuity, differentiating the results of a simulation gives gradients that have errors of a size independent of the stepsize. This means that the strategy of “optimize the discretization” will usually fail for problems of this kind. We approximate the discontinuous right-hand side for the differential equations or inclusions by a smooth right-hand side. For these smoothed approximations, we show that the resulting gradients approach the true gradients provided that the start and end points of the trajectory do not lie on the discontinuity and that Euler’s method is used where the step size is “sufficiently small” in comparison with the smoothing parameter. Numerical results are presented for a crude model of car racing that involves Coulomb friction and slip showing that this approach is practical and can handle problems of moderate complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson K.E.: An Introduction to Numerical Analysis, 1st edn. Wiley, New York (1978)

    MATH  Google Scholar 

  2. Aubin J.-P., Cellina A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Springer, Berlin (1984)

    MATH  Google Scholar 

  3. Bell D.J., Jacobsen D.H.: Singular Optimal Control Problems. Mathematics in Science and Engineering, vol. 117. Academic Press, New York (1975)

    Google Scholar 

  4. Brézis, H.: Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland Publishing, Amsterdam, North-Holland Mathematics Studies, No. 5. Notas de Matemática (50) (1973)

  5. Clarke F.H.: Optimal control and the true hamiltonian. SIAM Rev. 21, 157–166 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Clarke, F.H.: Methods of Dynamic and Nonsmooth Optimization. CBMS–NSF Reg. Conf. Ser. #57. SIAM, Philadelphia (1989)

  7. Clarke, F.H.: Nonsmooth Analysis and Optimization. SIAM, Philadelphia (1990). Originally published by the Canadian Mathematical Society (1983)

  8. Clarke F.H.: The maximum principle under minimal hypotheses. SIAM J. Control Optim. 14(6), 1078–1091 (1976)

    Article  MATH  Google Scholar 

  9. Driessen B.J., Sadegh N.: Minimum-time control of systems with Coulomb friction: near global optima via mixed integer linear programming. Optimal Control Appl. Methods 22(2), 51–62 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Driessen B.J., Sadegh N.: On the discontinuity of the costates for optimal control problems with Coulomb friction. Optimal Control Appl. Methods 22(4), 197–200 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Filippov A.F.: Differential Equations with Discontinuous Right-Hand Side. Kluwer, Dordrecht (1988)

    Google Scholar 

  12. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: a Modeling Language for Mathematical Programming, 2nd edn. Brooks/Cole, Thomson Learning, Pacific Grove (2003)

  13. Frankowska H.: Adjoint differential inclusions in necessary conditions for the minimal trajectories of differential inclusions. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(2), 75–99 (1985)

    MATH  MathSciNet  Google Scholar 

  14. Frankowska, H.: The maximum principle for a differential inclusion problem. In: Analysis and Optimization of Systems, Part 1 (Nice, 1984), pp. 517–531. Springer, Berlin (1984)

  15. Frankowska H.: Le principe de maximum pour une inclusion différentielle avec des contraintes sur les états initiaux et finaux. C. R. Acad. Sci. Paris Sér. I Math. 302(16), 599–602 (1986)

    MATH  MathSciNet  Google Scholar 

  16. Frankowska H.: The maximum principle for an optimal solution to a differential inclusion with end points constraints. SIAM J. Control Optim. 25(1), 145–157 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Frankowska H., Kas̀kosz B.: A maximum principle for differential inclusion problems with state constraints. Syst. Control Lett. 11(3), 189–194 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Galán S., Feehery W.F., Barton P.I.: Parametric sensitivity functions for hybrid discrete/continuous systems. Appl. Numer. Math. 31(1), 17–47 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gamkrelidze, R.V.: Principles of Optimal Control Theory. Plenum Press, London (1978). Original in Russian (1975)

  20. Glowinski R., Kearsley A.J.: On the simulation and control of some friction constrained motions. SIAM J. Optim. 5(3), 681–694 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kastner-Maresch, A.: Diskretisierungsverfahren zur Lösung von Differentialinklusionen. PhD thesis, Universität Bayreuth (1990)

  22. Kastner-Maresch A.: Implicit Runge–Kutta methods for differential inclusions. Numer. Funct. Anal. Optim. 11, 937–958 (1990)

    Article  MathSciNet  Google Scholar 

  23. Kim T.-H., Ha I.-J.: Time-optimal control of a single-DOF mechanical system with friction. IEEE Trans. Autom. Control 46(5), 751–755 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lipp S.C.: Brachistochrone with Coulomb friction. SIAM J. Control Optim. 35(2), 562–584 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Maso G.D., Rampazzo F.: On systems of ordinary differential equations with measures as controls. Differ. Integral Equ. 4(4), 739–765 (1991)

    MATH  Google Scholar 

  26. Outrata J., Kočvara M., Zowe J.: Nonsmooth Approaches to Optimization Problems with Equilibrium Constraints. Nonconvex Optimization and Its Applications, vol. 28. Kluwer, Dordrecht (1998)

    Google Scholar 

  27. Pontryagin L.S., Boltjanskij V.G., Gamkrelidze R.V., Mishchenko E.F.: The Mathematical Theory of Optimal Processes. Interscience, New York (1962) Original in Russian (1956)

    MATH  Google Scholar 

  28. Stewart D.E.: Numerical methods for friction problems with multiple contacts. J. Aust. Math. Soc. Ser. B 37(3), 288–308 (1996)

    Article  MATH  Google Scholar 

  29. Stewart D.: A high accuracy method for solving ODEs with discontinuous right-hand side. Numer. Math. 58(3), 299–328 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  30. Stewart, D.E.: The “Michael Schumacher” problem. http://www.cs.wisc.edu/cpnet/cpnetmeetings/iccp99/race-car/race-car.html. Accessed June 1999

  31. Sussmann, H.J.: Optimal control of nonsmooth systems with classically differentiable flow maps. In: Proceedings of the Sixth IFAC Symposium on Nonlinear Control Systems (NOLCOS 2004), Stuttgart (2004)

  32. Taubert, K.: Differenz Verfahren für gewöhnliche Anfangswertaufgaben mit unstetiger rechte Seite. In: Dold, A., Eckmann, B. (eds.) Numerische Behandlung nichtlinearer Integrodifferential- und Differentialgleichungen, pp. 137–148. Lecture Notes Series, vol. 395 (1974)

  33. Taubert K.: Differenzverfahren für Schwingungen mit trockener und zäher Reibung und für Regelungssysteme. Numer. Math. 26, 379–395 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  34. Taubert K.: Converging multistep methods for initial value problems involving multivalued maps. Computing 27, 123–136 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tolsma J.E., Barton P.I.: Hidden discontinuities and parametric sensitivity calculations. SIAM J. Sci. Comput. 23(6), 1861–1874 (2002) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  36. van Willigenburg L.G., Loop R.P.H.: Computation of time-optimal controls applied to rigid manipulators with friction. Int. J. Control 54(5), 1097–1117 (1991)

    Article  MATH  Google Scholar 

  37. Vanderbei, R.J.: LOQO User’s Manual, Version 4.05. Princeton University, Operations Research and Financial Engineering Department, October 2000

  38. Ventura, D., Martinez, T.: Optimal control using a neural/evolutionary hybrid system. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1036–1041, May (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Stewart.

Additional information

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory (“Argonne”) under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy.

The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, D.E., Anitescu, M. Optimal control of systems with discontinuous differential equations. Numer. Math. 114, 653–695 (2010). https://doi.org/10.1007/s00211-009-0262-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0262-2

Mathematics Subject Classification (2000)

Navigation