Skip to main content
Log in

Error bounds for approximation in Chebyshev points

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper improves error bounds for Gauss, Clenshaw–Curtis and Fejér’s first quadrature by using new error estimates for polynomial interpolation in Chebyshev points. We also derive convergence rates of Chebyshev interpolation polynomials of the first and second kind for numerical evaluation of highly oscillatory integrals. Preliminary numerical results show that the improved error bounds are reasonably sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adam G.H., Nobile A.: Product integration rules at Clenshaw-Curtis and related points: a robust implementation. IMA J. Numer. Math. 11, 271–296 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. National Bureau of Standards, Washington, D.C. (1964)

  3. Bernstein S.N.: Sur l’ordre de la meilleure approximation des fonctions continues par les polyn?mes de degré donné. Mem. Cl. Sci. Acad. Roy. Belg. 4, 1–103 (1912)

    Google Scholar 

  4. Berrut J.P., Trefethen L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46, 501–517 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boyd J.P.: Chebyshev and Fourier Spectral Methods. Dover, New York (2000)

    Google Scholar 

  6. Clenshaw C.W., Curtis A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dahlquist G., Björck A.: Numerical Methods in Scientific Computing. SIAM, Philadelphia (2007)

    Google Scholar 

  8. Davis P.J., Rabinowitz P.: Methods of Numerical Integration, 2nd edn. Academic Press, New York (1984)

    MATH  Google Scholar 

  9. Deaño A., Huybrechs D.: Complex Gaussian quadrature of oscillatory integrals. Numer. Math. 112, 197–219 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Evans G.A.: Practical Numerical Integration. Wiley, Chichester (1993)

    MATH  Google Scholar 

  11. Evans G.A., Webster J.R.: A comparison of some methods for the evaluation of highly oscillatory integrals. J. Comput. Appl. Math. 112, 55–69 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Glaser A., Liu X., Rokhlin V.: A fast algorithm for the calculation of the roots of special functions. SIAM J. Sci. Comput. 29, 1420–1438 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gradshteyn I.S., Ryzhik I.M.: Tables of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000)

    Google Scholar 

  14. O’Hara H., Smith F.J.: Error estimation in the Clenshaw-Curtis quadrature formula. Comput. J. 11, 213–219 (1968)

    MATH  MathSciNet  Google Scholar 

  15. Hascelik A.I.: On numerical computation of integrals with integrands of the form f(x) sin(w/x r) on [0,1]. J. Comput. Appl. Math. 223, 399–408 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Iserles A., Nørsett S.P.: Efficient quadrature of highly-oscillatory integrals using derivatives. Proc. R. Soc. A 461, 1383–1399 (2005)

    Article  MATH  Google Scholar 

  17. Kussmaul R.: Clenshaw-Curtis quadrature with a weighting function. Computing 9, 159–164 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  18. Littlewood R.K., Zakian V.: Numerical evaluation of Fourier integrals. J. Inst. Math. Appl. 18, 331–339 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mason J.C., Handscomb D.C.: Chebyshev Polynomials. CRC Press, New York (2003)

    MATH  Google Scholar 

  20. Paterson T.N.L.: On high precision methods for the evaluation of Fourier integrals with finite and infinite limits. Numer. Math. 27, 41–52 (1976)

    Article  MathSciNet  Google Scholar 

  21. Piessens R., Branders M.: Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT 23, 370–381 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  22. Piessens R., Poleunis F.: A numerical method for the integration of oscillatory functions. BIT 11, 317–327 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  23. Powell M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  24. Sloan I.H.: On the numerical evaluation of singular integrals. BIT 18, 91–102 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sloan I.H., Smith W.E.: Product-integration with the Clenshaw-Curtis and related points. Numer. Math. 30, 415–428 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sloan I.H., Smith W.E.: Product integration with the Clenshaw-Curtis points: implementation and error estimates. Numer. Math. 34, 387–401 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  27. Stein E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  28. Szegö G.: Orthogonal Polynomial. American Mathematical Society, Providence, Rhode Island (1939)

    Google Scholar 

  29. Trefethen L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  30. Trefethen L.N.: Is Gauss quadrature better than Clenshaw-Curtis?. SIAM Rev. 50, 67–87 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Waldvogel J.: Fast construction of the Fejér and Clenshaw-Curtis quadrature rules. BIT 46, 195–202 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Xiang S.: Efficient Filon-type methods for \({\int_a^bf(x)e^{i\omega g(x)}dx}\) . Numer. Math. 105, 633–658 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhuang Xiang.

Additional information

This paper is supported partly by NSF of China (No.10771218) and the Program for New Century Excellent Talents in University, State Education Ministry, China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, S., Chen, X. & Wang, H. Error bounds for approximation in Chebyshev points. Numer. Math. 116, 463–491 (2010). https://doi.org/10.1007/s00211-010-0309-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0309-4

Mathematics Subject Classification (2000)

Navigation