Skip to main content
Log in

Analysis of a continuous finite element method for \(H(\mathrm{curl},\mathrm{div})\)-elliptic interface problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we develop a continuous finite element method for the curlcurl-grad div vector second-order elliptic problem in a three-dimensional polyhedral domain occupied by discontinuous nonhomogeneous anisotropic materials. In spite of the fact that the curlcurl-grad div interface problem is closely related to the elliptic interface problem of vector Laplace operator type, the continuous finite element discretization of the standard variational problem of the former generally fails to give a correct solution even in the case of homogeneous media whenever the physical domain has reentrant corners and edges. To discretize the curlcurl-grad div interface problem by the continuous finite element method, we apply an element-local \(L^2\) projector to the curl operator and a pseudo-local \(L^2\) projector to the div operator, where the continuous Lagrange linear element enriched by suitable element and face bubbles may be employed. It is shown that the finite element problem retains the same coercivity property as the continuous problem. An error estimate \(\mathcal{O }(h^r)\) in an energy norm is obtained between the analytical solution and the continuous finite element solution, where the analytical solution is in \(\prod _{l=1}^L (H^r(\Omega _l))^3\) for some \(r\in (1/2,1]\) due to the domain boundary reentrant corners and edges (e.g., nonconvex polyhedron) and due to the interfaces between the different material domains in \(\Omega =\bigcup _{l=1}^L \Omega _l\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Alonso, A., Valli, A.: Some remarks on the characterization of the space of tangential traces of \(H({\rm rot};\Omega )\) and the construction of an extension operator. Manuscr. Math. 89, 159–178 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Assous, F., Ciarlet, P. Jr., Sonnendrücker, E.: Resolution of the Maxwell equations in a domain with reentrant corners. M2AN Math. Model. Numer. Anal. 32, 359–389 (1998)

    Google Scholar 

  5. Assous, F., Ciarlet, P. Jr., Labrunie, S., Lohrengel, S.: The singular complement method. In: Debit, N., et al. (eds.) 13th International Conference on Domain Decomposition Methods, pp. 161–189. CIMNE, Barcelona (2002)

  6. Bernardi, C.: Optimal finite element interpolation on curved domains. SIAM J. Numer. Anal. 26, 1212–1240 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernardi, C., Girault, V.: A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35, 1893–1916 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berndt, M., Manteuffel, T. A., McCormick, S. F., Starke, G.: Analysis of first-order system least-squares (FOSLS) for elliptic problems with discontinuous coefficients, Part I, II. SIAM J. Numer. Anal. 43, 386–408, 409–436 (2005)

    Google Scholar 

  9. Birman, M., Solomyak, M.: \(L^2\)-theory of the Maxwell operator in arbitrary domains. Russ. Math. Surv. 42, 75–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonito, A., Guermond, J.-L.: Approximation of the eigenvalue problem for the time-harmonic Maxwell system by continuous Lagrange finite elements. Math. Comput. 80, 1887–1910 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonnet-Ben Dhia, A.-S., Hazard, C., Lohrengel, S.: A singular field method for the solution of Maxwell’s equations in polyhedral domains. SIAM J. Appl. Math. 59, 2028–2044 (2000)

    Article  MathSciNet  Google Scholar 

  12. Bossavit, A.: Computational Electromagnetism: Variational Formulations. Edge Elements, Complementarity. Academic Press, New York (1998)

    Google Scholar 

  13. Bramble, J., Pasciak, J.: A new approximation technique for div-curl systems. Math. Comput. 73, 1739–1762 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (1996)

    Google Scholar 

  15. Brenner, S.C., Cui, J., Li, F., Sung, L.-Y.: A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem. Numer. Math. 109, 509–533 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Buffa, A., Ciarlet, P. Jr., Jamelot, E.: Solving electromagnetic eigenvalue problems in polyhedral domains. Numer. Math. 113, 497–518 (2009)

    Google Scholar 

  17. Caloz, G., Dauge, M., Péron, V.: Uniform estimates for transmission problems with high contrast in heat conduction and electromagnetism. J. Math. Anal. Appl. 370, 555–572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cao, Y.Z., Gunzburger, M.D.: Least-squares finite element approximations to solutions of interface problems. SIAM J. Numer. Anal. 35, 393–405 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Carstensen, C., Funken, S., Hackbusch, W., Hoppe, R.H.W., Monk, P.: Computational Electromagnetics. In: Proceedings of the GAMM Workshop on Computational Electromagnetics. Springer, Berlin (2003)

  20. Cessenat, M.: Mathematical Methods in Electromagnetism: Linear Theory and Applications. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  21. Chen, Z.-M., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problem. Numer. Math. 79, 175–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, Z.-M., Du, Q., Zou, J.: Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37, 1542–1570 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chung, T., Engquist, B.: Convergence analysis of fully discrete finite volume methods for Maxwell’s equations in nonhomogeneous media. SIAM J. Numer. Anal. 43, 303–317 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. II, Finite Element Methods (part 1). North-Holland, Amsterdam (1991)

  25. Ciarlet, P. Jr., Lefèvre, F., Lohrengel, S., Nicaise, S.: Weighted regularization for composite materials in electromagnetism. M2AN Math. Model. Numer. Anal. 44, 75–108 (2010)

    Google Scholar 

  26. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Numer. Anal. 9, 77–84 (1975)

    MATH  Google Scholar 

  27. Costabel, M.: A coercive bilinear form for Maxwell’s equations. J. Math. Anal. Appl. 157, 527–541 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math. 93, 239–277 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151, 221–276 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Costabel, M., Dauge, M.: Maxwell and Lamé eigenvalues on polyhedra. Math. Methods Appl. Sci. 22, 243–258 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Costabel, M., Dauge, M., Nicaise, S.: Singularities of Maxwell interface problem. M2AN Math. Model. Numer. Anal. 33, 627–649 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Numer. Anal. 7, 33–75 (1973)

    MathSciNet  Google Scholar 

  33. Duan, H.-Y., Jia, F., Tan, R.C.E.: The local \(L^2\)-projected \(C^0\) finite element method for the Maxwell problem. SIAM J. Numer. Anal. 47, 1274–1303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Duan, H.-Y. Lin, P., Tan, R.C.E: The local \(L^2\) projected finite element method for Maxwell problem in a multi-connected Lipschitz polyhedron filled with discontinuous anisotropic inhomogeneous materials, Research Report (2009)

  35. Fernandes, P., Gilardi, G.: Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7, 957–991 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fernandes, P., Perugia, I.: Vector potential formulation for magnetostatics and modelling of permanent magnets. IMA J. Appl. Math. 66, 293–318 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Franca, L.P., Stenberg, R.: Error analysis of some Galerkin-least-squares methods for the elasticity equations. SIAM J. Numer. Anal. 28, 1680–1697 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Girault, V.: A local projection operator for quadrilateral finite elements. Math. Comput. 64, 1421–1431 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  40. Grisvard, P.: Elliptitc Problems in Nonsmooth Domains. Pitman Advanced Publishing Program, London (1985)

    Google Scholar 

  41. Hazard, C., Lenoir, M.: On the solution of time-harmonic scattering problems for Maxwell’s equations. SIAM J. Math. Anal. 27, 1597–1630 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hazard, C., Lohrengel, S.: A singular field method for Maxwell’s equations: numerical aspects for 2D magnetostatics. SIAM J. Numer. Anal. 40, 1021–1040 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 237–339 (2002)

  44. Hiptmair, R., Li, J., Zou, J.: Convergence analysis of finite element methods for H(div;\(\Omega \))-elliptic interface problems. J. Numer. Math. 18, 187–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Houston, P., Perugia, I., Schneebeli, A., Schotzau, D.: Interior penalty method for indefinite time-harmonic Maxwell equation. Numer. Math. 100, 485–518 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Huang, J.-G., Zou, J.: Uniform a pripori estimates for elliptic and static Maxwell interface problems. Dis. Con. Dyn. Sys., Ser. B(DCDS-B) 7, 145–170 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hughes, T.J.R.: The Finite Element Method-Linear Static and Dynamic Finite Element Analysis. Dover, New York (2000)

    MATH  Google Scholar 

  48. Jiang, B.-N.: The Least-Squares Finite Element Method. Springer, New York (1998)

    Book  MATH  Google Scholar 

  49. Jin, J.M.: The Finite Element Method in Electromagnetics, 2nd edn. Wiley, New York (2002)

    MATH  Google Scholar 

  50. Lee, E., Manteuffel, T.A., Westphal, C.R.: Weighted-norm first-order system least-squares (FOSLS) for div/curl systems with three dimensional edge singularities. SIAM J. Numer. Anal. 46, 1619–1639 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Li, Z.-L., Ito, K.: The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains. SIAM Frontiers in Applied mathematics (2006)

  52. Lohrengel, S., Nicaise, S.: Singularities and density problems for composite materials in electromagnetism. Commun. Part Differ. Equ. 27, 1575–1623 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Monk, P.: Finite Element Methods for Maxwell Equations. Clarendon Press, Oxford (2003)

    Book  MATH  Google Scholar 

  54. Morand, O.: Interactions Fluides-Structures. Recherches en mathematiques appliquees, vol. RMA23. Masson, Paris (1992)

    Google Scholar 

  55. Nédélec, J.: Mixed finite elements in R3. Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  56. Nédélec, J.: A new family of mixed finite elements in R3. Numer. Math. 50, 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  57. Nicaise, S.: Edge elements on anisotropic meshes and approximation of the Maxwell equations. SAIM J. Numer. Anal. 39, 784–816 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  58. Plum, M., Wieners, C.: Optimal a priori estimates for interface problems. Numer. Math. 95, 735–759 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  59. Saranen, J.: On general harmonic fields in domains with anisotropic nonhomogeneous media. J. Math. Anal. Appl. 88, 104–115 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  60. Saranen, J.: On electric and magnetic problems for vector fields in anisotropic nonhomogeneous media. J. Math. Anal. Appl. 91, 254–275 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  61. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  62. Thomée, V.: Galerkin Finite Element Methods For Parabolic Problems, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  63. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z., Nithiarasu, P.: The Finite Element Method. Butterworth- Heinemann, Oxford (2005)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the anonymous referees for their valuable comments and suggestions which have helped to improve the overall presentation of the paper. The first author was partially supported by the National Natural Science Foundation of China under the grants 11071132 and 11171168 and the Research Fund for the Doctoral Program of Higher Education of China under grant 20100031110002. The second author was partially supported by the Leverhulme Trust Research Fellowship (No RF/9/RFG/2009/0507) and University of Science and Technology Beijing research grant (No 06108038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger C. E. Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, H., Lin, P. & Tan, R.C.E. Analysis of a continuous finite element method for \(H(\mathrm{curl},\mathrm{div})\)-elliptic interface problem. Numer. Math. 123, 671–707 (2013). https://doi.org/10.1007/s00211-012-0500-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0500-x

Mathematics Subject Classification

Navigation