Skip to main content
Log in

Numerical integration of positive linear differential-algebraic systems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In the simulation of dynamical processes in economy, social sciences, biology or chemistry, the analyzed values often represent non-negative quantities like the amount of goods or individuals or the density of a chemical or biological species. Such systems are typically described by positive ordinary differential equations (ODEs) that have a non-negative solution for every non-negative initial value. Besides positivity, these processes often are subject to algebraic constraints that result from conservation laws, limitation of resources, or balance conditions and thus the models are differential-algebraic equations (DAEs). In this work, we present conditions under which both these properties, the positivity as well as the algebraic constraints, are preserved in the numerical simulation by Runge–Kutta or multistep discretization methods. Using a decomposition approach, we separate the dynamic and the algebraic equations of a given linear, positive DAE to give positivity preserving conditions for each part separately. For the dynamic part, we generalize the results for positive ODEs to DAEs using the solution representation via Drazin inverses. For the algebraic part, we use the consistency conditions of the discretization method to derive conditions under which this part of the approximation overestimates the exact solution and thus is non-negative. We analyze these conditions for some common Runge–Kutta and multistep methods and observe that for index-1 systems and stiffly accurate Runge–Kutta methods, positivity is conditionally preserved under similar conditions as for ODEs. For higher index problems, however, none of the common methods is suitable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anderson, A., Chaplain, M., Newmann, E., Steele, R., Thompson, A.: Mathematical modelling of tumour invasion and metastasis. J. Theor. Med. 2, 129–154 (2000)

    Article  MATH  Google Scholar 

  2. Anderson, B.D.O.: New developments in the theory of positive systems. In: Byrnes, C. (ed) Systems and Control in the Twenty-First Century, Progr. Systems Control Theory, vol. 22, pp. 17–36. Birkhäuser, Boston (1997)

  3. Baum, A., Mehrmann, V.: Numerical integration of positive linear differential-algebraic systems. Institut für Mathematik, TU Berlin, Str. des 17. Juni 136, D-10623 Berlin, FRG (2012, preprint)

  4. Benvenuti, L., De Santis, A., Farina, L.: Positive Systems, vol. 294. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  5. Benvenuti, L., Farina, L.: Positive and compartmental systems. IEEE Trans. Autom. Control 47, 370–373 (2002)

    Article  MathSciNet  Google Scholar 

  6. Birkhoff, G., Varga, R.S.: Reactor criticality and non-negative matrices. J. Soc. Ind. Appl. Math. 6, 354–377 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bolley, C., Crouzeix, M.: Conservation de la positivité lors de la discrétisation des problemes d’évolution paraboliques. R.A.I.R.O. Analyse numerique 12, 81–88 (1978)

  8. Butcher, J.: The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods. Wiley, Chichester (1987)

    MATH  Google Scholar 

  9. Campbell, S.: Singular Systems of Differential Equations I. Pitman, San Francisco (1980)

    Google Scholar 

  10. Campbell, S., Meyer, C.: Generalized Inverses of Linear Transformations. Pitman, San Francisco (1979)

    MATH  Google Scholar 

  11. Capasso, V.: Mathematical Structures of Epidemic Systems. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  12. Commault, C., Marchand, N.: Positive Systems, vol. 341. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  13. Dahlquist, G.: Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand. 4, 33–53 (1956)

    MathSciNet  MATH  Google Scholar 

  14. Farina, L., Rinaldi, S.: Positive Linear Systems: Theory and its Applications. Wiley, New York (2000)

    Book  Google Scholar 

  15. Gandolfo, G.: Economic Dynamics. Springer, Heidelberg (1997)

    Book  Google Scholar 

  16. Gantmacher, F.: The Theory of Matrices, vol. 1. Chelsea Publishing Company, New York (1959)

    MATH  Google Scholar 

  17. Gottlieb, S., Ketcheson, D., Shu, C.: Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific Publishing Company, Singapore (2011)

    Book  MATH  Google Scholar 

  18. Griend, J., Kraaijevanger, J.: Absolute monotonicity of rational functions occuring in the numerical study of initial value problems. Numer. Math. 49, 413–424 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hairer, E., Lubich, C., Roche, M.: The Numerical Solution of Differential-Algebraic Systems by Runge–Kutta Methods. Springer, Berlin (1989)

    MATH  Google Scholar 

  20. Hairer, E., Noersett, S., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  21. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  22. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  23. Horvath, Z.: Positivity of Runge–Kutta and diagonally split Runge–Kutta methods. Appl. Numer. Math. 28, 309–326 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Horvath, Z.: Positively invariant cones of dynamical systems under Runge–Kutta and Rosenbrock-type discretization. Proc. Appl. Math. Mech. (PAMM) 4, 688–689 (2004). doi:10.1002/pamm.200410325

    Article  Google Scholar 

  25. Horvath, Z.: On the positivity step size threshold of Runge–Kutta methods. Appl. Numer. Math. 53, 341–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hundsdorfer, W., Koren, B., van Loon, M., Verwer, J.: A positive finite-difference advection scheme. J. Comp. Phys. 117, 35–46 (1994)

    Article  Google Scholar 

  27. Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  28. Kaczorek, T.: Positive 1D and 2D Systems. Springer, London (2002)

    Book  MATH  Google Scholar 

  29. Ketcheson, D.: Computation of optimal monotonicity preserving general linear methods. Math. Comp. 78(267), 1497–1513 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. King, J., Unterkofler, K., Teschl, G., Teschl, S., Koc, H., Hinterhuber, H., Amann, A.: A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone. J. Math. Biol. 63(5), 959–999 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kraaijevanger, J.: Absolute monotonicity of polynomials occuring in the numerical soution of initial value problems. Numer. Math. 48, 303–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations Analysis and Numerical Solution. EMS Publishing House, Zürich (2006)

    Book  MATH  Google Scholar 

  33. Lancaster, P., Tismenetsky, M.: The Theory of Matrices. Academic Press, New York (1985)

    MATH  Google Scholar 

  34. Laub, A.: Matrix analysis for scientists and engineers. Society for Industrial and Applied Mathematics, Philadelphia (2005)

    Book  MATH  Google Scholar 

  35. Lenferink, H.: Contractivity preserving explicit linear multistep methods. Numer. Math. 55, 213–223 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lenferink, H.: Contractivity preserving implicit linear multistep methods. Math. Comp. 56, 177–199 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Luenberger, D.G.: Introduction to Dynamic Systems. Wiley, New York (1979)

    MATH  Google Scholar 

  38. Murray, J., Lubkin, S., Tyson, R.: Model and analysis of chemotactic bacterial patters in a liquid medium. J. Math. Biol. 38, 359–75 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Spijker, M.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM Num Anal 45, 1226–1245 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (2002)

    MATH  Google Scholar 

  41. Tian, H.: On the reverse order law \(({AB})^{D}= {B}^{D}{A}^{D}\). Numer. Math. J. Chin. Univ. 9(1), 355–358 (2000)

    Google Scholar 

  42. Varga, R.: Matrix Iterative Analysis, 2nd edn. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  43. Virnik, E.: Stability analysis of positive descriptor systems. Linear Algebra Appl. 429, 2640–2659 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Baum.

Additional information

V. Mehrmann was supported by ERC Advanced Grant, MODSIMCONMP.

This study was supported by DFG Research Center Matheon, Mathematics for Key Technologies in Berlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baum, A.K., Mehrmann, V. Numerical integration of positive linear differential-algebraic systems. Numer. Math. 124, 279–307 (2013). https://doi.org/10.1007/s00211-013-0514-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0514-z

Keywords

Navigation