Skip to main content
Log in

Pathwise Hölder convergence of the implicit-linear Euler scheme for semi-linear SPDEs with multiplicative noise

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this article we prove pathwise Hölder convergence with optimal rates of the implicit Euler scheme for the abstract stochastic Cauchy problem

$$\begin{aligned} \left\{ \begin{aligned} dU(t)&= AU(t)\,dt + F(t,U(t))\,dt + G(t,U(t))\,dW_H(t);\quad t\in [0,T],\\ U(0)&=x_0. \end{aligned}\right. \end{aligned}$$
(1.1)

Here \(A\) is the generator of an analytic \(C_0\)-semigroup on a umd Banach space \(X,\,W_H\) is a cylindrical Brownian motion in a Hilbert space \(H\), and the functions \(F:[0,T]\times X\rightarrow X_{\theta _F}\) and \(G:[0,T]\times X\rightarrow {\fancyscript{L}}(H,X_{\theta _G})\) satisfy appropriate (local) Lipschitz conditions. The results are applied to a class of second order parabolic SPDEs driven by multiplicative space-time white noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albiac, F., Kalton, N.J.: Topics in Banach Space Theory. volume 233 of Graduate Texts in Mathematics. Springer, New York (2006)

    Google Scholar 

  3. Bentkus, V., Paulauskas, V.: Optimal error estimates in operator-norm approximations of semigroups. Lett. Math. Phys. 68(3), 131–138 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blömker, D., Jentzen, A.: Galerkin approximations for the stochastic Burgers equation. http://opus.bibliothek.uni-augsburg.de/volltexte/2009/1444/ (2009, preprint)

  5. Burkholder, D.L.: Martingales and singular integrals in Banach spaces. In: Handbook of the Geometry of Banach Spaces, vol. I, pp. 233–269. North-Holland, Amsterdam (2001)

  6. Clark, J.M.C., Cameron, R.J.: The maximum rate of convergence of discrete approximations for stochastic differential equations. In: Stochastic Differential Systems (Proc. IFIP-WG 7/1 Working Conf., Vilnius, 1978), volume 25 of Lecture Notes in Control and Information Sciences, pp. 162–171. Springer, Berlin (1980)

  7. Clément, P., de Pagter, B., Sukochev, F.A., Witvliet, H.: Schauder decompositions and multiplier theorems. Studia Math. 138(2), 135–163 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Cox, S.G.: Stochastic Differential Equations in Banach Spaces: Decoupling, Delay Equations, and Approximations in Space and Time. PhD thesis, Delft University of Technology (2012)

  9. Cox, S.G., van Neerven, J.M.A.M.: Convergence rates of the splitting scheme for parabolic linear stochastic Cauchy problems. SIAM J. Numer. Anal. 48(2), 428–451 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cox, S.G., Veraar, M.C.: Vector-valued decoupling and the Burkholder–Davis–Gundy inequality. Ill. J. Math. (to appear)

  11. Davie, A.M., Gaines, J.G.: Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations. Math. Comput. 70(233), 121–134 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Denk, R., Hieber, M., Prüss, J.: \(R\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166, 788 (2003)

  13. Diestel, J., Uhl Jr, J.J.: Vector Measures. American Mathematical Society, Providence (1977)

    Book  MATH  Google Scholar 

  14. Grecksch, W., Kloeden, P.E.: Time-discretised Galerkin approximations of parabolic stochastic PDEs. Bull. Aust. Math. Soc. 54(1), 79–85 (1996)

    Article  MathSciNet  Google Scholar 

  15. Gyöngy, I.: A note on Euler’s approximations. Potential Anal. 8(3), 205–216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gyöngy, I.: Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II. Potential Anal. 11(1), 1–37 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gyöngy, I., Krylov, N.: On the splitting-up method and stochastic partial differential equations. Ann. Probab. 31(2), 564–591 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gyöngy, I., Millet, A.: Rate of convergence of space time approximations for stochastic evolution equations. Potential Anal. 30(1), 29–64 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gyöngy, I., Nualart, D.: Implicit scheme for quasi-linear parabolic partial differential equations perturbed by space-time white noise. Stoch. Process. Appl. 58(1), 57–72 (1995)

    Article  MATH  Google Scholar 

  20. Hausenblas, E.: Numerical analysis of semilinear stochastic evolution equations in Banach spaces. J. Comput. Appl. Math. 147(2), 485–516 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hausenblas, E.: Approximation for semilinear stochastic evolution equations. Potential Anal. 18(2), 141–186 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2130), 1563–1576 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Jentzen, A.: Pathwise numerical approximation of SPDEs with additive noise under non-global Lipschitz coefficients. Potential Anal. 31(4), 375–404 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jentzen, A., Kloeden, P.E.: The numerical approximation of stochastic partial differential equations. Milan J. Math. 77, 205–244 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kaiser, C., Weis, L.: Wavelet transform for functions with values in UMD spaces. Studia Math. 186(2), 101–126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kalton, N.J., Weis, L.: The \(H^\infty \)-calculus and square function estimates (in preparation)

  27. Kloeden, P.E., Neuenkirch, A.: The pathwise convergence of approximation schemes for stochastic differential equations. LMS J. Comput. Math. 10, 235–253 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kruse, R.: Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise. arXiv:1103.4504

  29. Kunstmann, P.C., Weis, L.: Maximal \(L_{p}\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^{\infty }\)-functional calculus. In: Functional Analytic Methods for Evolution Equations, volume 1855 of Lecture Notes in Mathematics, pp. 65–311. Springer, Berlin (2004)

  30. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel (1995)

    Book  Google Scholar 

  31. Lunardi, A.: Interpolation Theory. Appunti. Scuola Normale Superiore Pisa (1999)

  32. Millet, A., Morien, P.-L.: On implicit and explicit discretization schemes for parabolic SPDEs in any dimension. Stoch. Process. Appl. 115(7), 1073–1106 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Müller-Gronbach, Th, Ritter, K.: Lower bounds and nonuniform time discretization for approximation of stochastic heat equations. Found. Comput. Math. 7(2), 135–181 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. van Neerven, J.M.A.M.: \(\gamma \)-Radonifying operators—a survey. Proc. CMA 44, 1–62 (2010)

    Google Scholar 

  35. van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Stochastic integration in UMD Banach spaces. Ann. Probab. 35, 1438–1478 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Stochastic evolution equations in UMD Banach spaces. J. Funct. Anal. 255(4), 940–993 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Stochastic maximal \(L^{p}\)-regularity. Ann. Probab. 40, 788–812 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. van Neerven, J.M.A.M., Weis, L.: Stochastic integration of operator-valued functions with respect to Banach space-valued Brownian motion. Potential Anal. 29(1), 65–88 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pisier, G.: Martingales with values in uniformly convex spaces. Isr. J. Math. 20(3–4), 326–350 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pisier, G.: Some results on Banach spaces without local unconditional structure. Compos. Math. 37(1), 3–19 (1978)

    MathSciNet  MATH  Google Scholar 

  41. Printems, J.: On the discretization in time of parabolic stochastic partial differential equations. M2AN. Math. Model. Numer. Anal. 35(6), 1055–1078 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, volume 293 of Grundlehren der Mathematischen Wissenschaften, 3rd edn. Springer, Berlin (1999)

    Book  Google Scholar 

  43. Walsh, J.B.: Finite element methods for parabolic stochastic PDE’s. Potential Anal. 23(1), 1–43 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Weis, L.: Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity. Math. Ann. 319(4), 735–758 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yan, Y.: Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43(4), 1363–1384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan van Neerven.

Additional information

Part of this research was conducted while S. Cox was visiting the University of New South Wales in Sydney, Australia. She would like to thank the university, and Ben Goldys in particular, for their hospitality. J. van Neerven gratefully acknowledges support by VICI subsidy 639.033.604 of the Netherlands Organisation for Scientific Research (NWO). The authors thank Markus Haase and Mark Veraar for their helpful comments.

Appendices

Appendix A: Technical lemmas

Here we state and prove with two lemmas which give estimates for the \(\gamma \)-radonifying norm of stochastic and deterministic integral processes.

Lemma 9.1

Let \(q\in [1,\infty ],\,\frac{1}{q}+\frac{1}{q^{\prime }}=1\), and let \((R,{\fancyscript{R}},\mu )\) be a finite measure space and \((S,{\fancyscript{S}},\nu )\) a \(\sigma \)-finite measure space. Let \(Y_1\) and \(Y_2\) be Banach spaces, and suppose \(\Psi _1\in L^q(R,\gamma (S;Y_1))\) and \(\Psi _2\in L^{q^{\prime }}(R,{\fancyscript{L}}(Y_1,Y_2))\) such that \((r,s)\mapsto \Psi _2(r)\Psi _1(r,s)\) defines an element of \(L^1(R\times S;Y_2)\). Then:

$$\begin{aligned} \left| \!\left| s\mapsto \int _R \Psi _2(r)\Psi _1(r,s)\,d\mu (r) \right| \!\right| _{\gamma (S;Y_2)}\le |\!|{} \Psi _2 |\!|{} _{L^{q^{\prime }}(S;{\fancyscript{L}}(Y_1,Y_2))} |\!|{} \Psi _1|\!|{} _{L^q(R,\gamma (S;Y_1))}. \end{aligned}$$

Proof

We first consider the case \(q\in [1,\infty )\). The \(L^1\)-assumption guarantees that the integral on the left-hand side exists as a Bochner integral in \(Y_2\) for \(\nu \)-almost all \(s\in S\). By (2.3) and the fact that \(q<\infty \) we may identify \(\Psi _1\) with an element in \(\gamma (S;L^q(R;Y_1))\), and by the Hölder inequality \(\Psi _2\) induces a bounded operator from \(L^q(R;Y_1)\) to \(Y_2\). Under these identifications, the expression inside the norm at left-hand side equals the operator \(\Psi _2\circ \Psi _1 \in \gamma (S;Y_2)\) and the desired estimate is noting but the right ideal property for the \(\gamma \)-radonifying norm.

The case \(q=\infty \) now follows by an approximation argument. Suppose first \(\Psi _1\in L^1\cap L^{\infty }(R,\gamma (S;Y_1))\) and \(\Psi _2\in L^1\cap L^{\infty }(R,{\fancyscript{L}}(Y_1,Y_2))\). By the above we have:

$$\begin{aligned}&\left| \!\left| s \mapsto \int _R \Psi _2(r)\Psi _1(r,s)\,d\mu (r)\right| \!\right| _{\gamma (S;Y_2)}\\&\quad \; \le \lim _{q\uparrow \infty ,q^{\prime }\downarrow 1}|\!|{} \Psi _2 |\!|{} _{L^{q^{\prime }}(S;{\fancyscript{L}}(Y_1,Y_2))} |\!|{} \Psi _1|\!|{} _{L^q(R,\gamma (S;Y_1))} \\&\quad \; = |\!|{} \Psi _2 |\!|{} _{L^{\infty }(S;{\fancyscript{L}}(Y_1,Y_2))} |\!|{} \Psi _1|\!|{} _{L^1(R,\gamma (S;Y_1))}. \end{aligned}$$

The result for general \(\Psi _1\in L^{\infty }(R,\gamma (S;Y_1))\) and \(\Psi _2\in L^{1}(R,{\fancyscript{L}}(Y_1,Y_2))\) follows by approximation. \(\square \)

The above lemma can be applied to prove the following generalization of [36, Proposition 4.5].

Lemma 9.2

Let \(X_1\) and \(X_2\) be umd Banach spaces. Let \((R,{\fancyscript{R}},\mu )\) be a finite measure space and \((S,{\fancyscript{S}},\nu )\) a \(\sigma \)-finite measure space. Let \(\Phi _1:[0,T]\times \Omega \rightarrow {\fancyscript{L}}(H,X_1)\), let \(\Phi _2\in L^1(R;{\fancyscript{L}}(X_1,X_2))\), and let \(f\in L^{\infty }(R\times [0,T];L^2(S))\). If \(\Phi _1\) is \(L^p\)-stochastically integrable for some \(p\in (1,\infty )\), then

$$\begin{aligned}&\left| \!\left| s \mapsto \int _{0}^{T} \int _R f(r,u)(s)\Phi _2(r)\Phi _1(u)\, d\mu (r) \,dW_H(u)\right| \!\right| _{L^p(\Omega ;\gamma (S;X_2))}\\&\quad \; \lesssim {\mathop {\mathrm{ess\,sup}}\limits _{(r,u)\in R\times [0,T]}} |\!|{} f(r,u)|\!|{} _{L^2(S)} |\!|{} \Phi _2 |\!|{} _{L^1(R,{\fancyscript{L}}(X_1,X_2))} |\!|{} \Phi _1 |\!|{} _{L^p(\Omega ;\gamma (0,T;H,X_1))}, \end{aligned}$$

with implied depending only on \(p,\,X_1,\,X_2\), provided the right-hand side is finite.

Proof

By [29, Corollary 2.17], for almost all \(s\in S\) the family \(\{T_{s,u}: \ u\in [0,T]\}\) is \(\gamma \)-bounded in \({\fancyscript{L}}(X_1,X_2)\), where

$$\begin{aligned} T_{s,u}x = \int _R f(r,u)(s)\Phi _2(r)x\, d\mu (r). \end{aligned}$$

Hence, by the \(\gamma \)-multiplier theorem (Theorem 2.2), for almost all \(s\in S\) the function \(u\mapsto \int _R f(r,u)(s)\Phi _2(r)\Phi _1(u)\, d\mu (r)\) belongs to \(L^p_{\fancyscript{F}}(\Omega ;\gamma (0,T;H,X_2))\).

Moreover, by Theorem 2.2 in combination with Theorem 2.3 (note that umd Banach spaces have non-trivial cotype) we have, for almost all \(r\in R\);

$$\begin{aligned} u\mapsto (s\mapsto f(r,u)(s)\Phi _1(u))\in L^p_{\fancyscript{F}}(\Omega ;\gamma (0,T;\gamma (S,X_1))). \end{aligned}$$

By the stochastic Fubini theorem, the isomorphism (2.3) and Lemma 9.1 (with \(q=\infty ,\,Y_1= L^p(\Omega ;X_1)\) and \(Y_2\!=\!L^p(\Omega ,X_2)\), to \(\Psi (r,s)\!=\!\int _{0}^{T} f(r,u)(s)\Phi _1(u)\,dW_H(u)\) and \(\Psi _2\!=\!\Phi _2\)) we have:

$$\begin{aligned}&\left| \!\left| s \mapsto \int _{0}^{T} \int _R f(r,u)(s)\Phi _2(r)\Phi _1(u)\, d\mu (r) \,dW_H(u)\right| \!\right| _{L^p(\Omega ;\gamma (S;X_2))}\nonumber \\&\quad \;\eqsim \left| \!\left| s\mapsto \int _R \Phi _2(r) \int _{0}^{T} f(r,u)(s)\Phi _1(u)\, \,dW_H(u)d\mu (r)\right| \!\right| _{\gamma (S;L^p(\Omega ;X_2))}\nonumber \\&\quad \; \lesssim |\!|{} \Phi _2 |\!|{} _{L^1(R,{\fancyscript{L}}(X_1,X_2))} \left| \!\left| s\mapsto \int _{0}^{T} f(r,u)(s)\Phi _1(u)\,dW_H(u) \right| \!\right| _{L^{\infty }(R,\gamma (S;L^p(\Omega ;X_1)))}.\nonumber \\ \end{aligned}$$
(9.1)

By isomorphism (2.3), Theorem 2.1, and Theorem 2.2 in combination with Theorem 2.3 we have, for almost all \(r\in R\) with implicit constants independent of \(r\):

$$\begin{aligned}&\left| \!\left| s \mapsto \int _{0}^{T} f(r,u)(s)\Phi _1(u)\,dW_H(u) \right| \!\right| _{\gamma (S;L^p(\Omega ;X_1))} \\&\quad \; \eqsim |\!|{} u \mapsto (s\mapsto f(r,u)(s)\Phi _1(u)) |\!|{} _{L^p(\Omega ;\gamma (0,T;\gamma (S;X_1)))}\\&\quad \; \le {\mathop {\text{ ess } \text{ sup }}\limits _{u\in [0,T]}} |\!|{} f(r,u)|\!|{} _{L^2(0,T)} |\!|{} \Phi _1 |\!|{} _{L^p(\Omega ;\gamma (0,T;X_1))}. \end{aligned}$$

The result now follows by inserting the above estimate into (9.1). \(\square \)

We proceed with two lemmas on Besov embeddings. The proof of the first lemma is closely related to the proof of [36, Lemma 3.1].

Lemma 9.3

Suppose \(Y\) is a Banach space with type \(\tau \in [1,2)\), and let \(\alpha \in [0,\frac{1}{2})\) and \(q\in (2,\infty )\) satisfy \(\frac{1}{q}<\frac{1}{\tau }-\alpha \). Let \(\Phi \in B^{\frac{1}{\tau }-\frac{1}{2}}_{q,\tau }(0,T;Y)\cap L^{\infty }(0,T;Y)\) and, for \(t\in [0,T]\), define \(\Phi _{\alpha ,t}:(0,t) \rightarrow Y\) by

$$\begin{aligned} \Phi _{\alpha ,t}(s)=(t-s)^{-\alpha }\Phi (s). \end{aligned}$$

Then there exists an \(\varepsilon _0>0\) such that for all \(T_0\in [0,T]\):

$$\begin{aligned} \sup _{0\le t\le T_0} |\!|{} \Phi _{\alpha ,t} |\!|{} _{B_{\tau ,\tau }^{\frac{1}{\tau }-\frac{1}{2}}(0,t;Y)} \lesssim T_0^{\varepsilon _0}|\!|{} \Phi |\!|{} _{L^{\infty }(0,T_0;Y)\cap B^{\frac{1}{\tau }-\frac{1}{2}}_{q,\tau }(0,T_0;Y)}. \end{aligned}$$
(9.2)

Proof

We shall in fact prove the following stronger result, namely that there exists an \(\varepsilon _0>0\) such that for all \(T_0\in [0,T]\):

$$\begin{aligned} \sup _{0\le t\le T_0} |\!|{} \Phi _{\alpha ,t} |\!|{} _{B_{\tau ,\tau }^{\frac{1}{\tau }-\frac{1}{2}}(\mathbb{R };Y)} \lesssim T_0^{\varepsilon _0} |\!|{} \Phi |\!|{} _{L^{\infty }(0,T_0;Y)\cap B^{\frac{1}{\tau }-\frac{1}{2}}_{q,\tau }(0,T_0;Y)}. \end{aligned}$$
(9.3)

On the left-hand side above, we think of \(\Phi _{\alpha ,t}\) as being extended identically zero outside the interval \((0,t)\).

Let \(q^{\prime }\in (1,\infty )\) be such that \(\frac{1}{q}+\frac{1}{q^{\prime }}=\frac{1}{\tau }\). As we assumed \(\frac{1}{q}<\frac{1}{\tau }-\alpha \) it follows that \(\alpha q^{\prime }<1\). Thus we can pick \(\varepsilon >0\) such that \(\varepsilon <\min \{\frac{1}{2}-\alpha ,1-\alpha q^{\prime }\}\).

Fix \(t\in [0,T_0]\). Let \(\rho \in (0,1]\) and let \(0<h<\rho \) (we only consider the case \(h>0\); the case \(h<0\) can be dealt with by observing that \(|\!|{} T_h^\mathbb{R }f - f|\!|{} _{L^p(\mathbb{R },Y)}=|\!|{} T_{-h}^\mathbb{R }f - f|\!|{} _{L^p(\mathbb{R },Y)}\)). First we consider the case that \(h\le t\). In that case we have:

$$\begin{aligned}&|\!|{} T_h^\mathbb{R }(\Phi _{\alpha ,t})-\Phi _{\alpha ,t} |\!|{} _{L^{\tau }(\mathbb{R },Y)} \\&\quad \le |\!|{} s\mapsto [(t-s-h)^{-\alpha }1_{[-h,t-h]}(s) - (t-s)^{-\alpha }1_{[0,t-h]}(s)]\Phi (s+h)|\!|{} _{L^{\tau }(\mathbb{R },Y)}\\&\qquad + |\!|{} s\mapsto (t-s)^{-\alpha }1_{[0,t]}(s)[\Phi (s+h)1_{[0,t-h]}(s)-\Phi (s)]|\!|{} _{L^{\tau }(\mathbb{R },Y)}\\&\quad \le |\!|{} s\mapsto [(t-s-h)^{-\alpha }1_{[-h,t-h]}(s) - (t-s)^{-\alpha }1_{[0,t-h]}(s)]|\!|{} _{L^{\tau }(\mathbb{R })} |\!|{} \Phi |\!|{} _{L^{\infty }(0,T_0;Y)}\\&\qquad + |\!|{} s\mapsto (t-s)^{-\alpha }1_{[0,t]}(s)|\!|{} _{L^{q^{\prime }}(\mathbb{R },Y)}|\!|{} T_h^\mathbb{R }(\Phi )1_{[0,t-h]}-\Phi |\!|{} _{L^q(0,t;Y)}. \end{aligned}$$

As \(\alpha q^{\prime } < 1\) we have:

$$\begin{aligned} |\!|{} s\mapsto (t-s)^{-\alpha }1_{[0,t]}(s)|\!|{} _{L^{q^{\prime }}(\mathbb{R },Y)} \lesssim T^{\frac{1}{q^{\prime }}-\alpha }. \end{aligned}$$

For \(p\ge 1\) and \(0\le b\le a\) one has \((a-b)^p\le a^p-b^p\) and thus:

$$\begin{aligned}&|\!|{} s\mapsto [(t-s-h)^{-\alpha }1_{[-h,t-h]}(s) - (t-s)^{-\alpha }1_{[0,t-h]}(s)]|\!|{} _{L^{\tau }(\mathbb{R })}\\&\quad =\left( \int _{-h}^{t-h} |(t-s-h)^{-\alpha } - (t-s)^{-\alpha }1_{[0,t-h]}(s)|^{\tau }\,ds \right) ^{\frac{1}{\tau }} \\&\quad \le \left( \int _{-h}^{t-h} [(t-s-h)^{-\alpha \tau } -(t-s)^{-\alpha \tau }1_{[0,t-h]}(s)] \,ds \right) ^{\frac{1}{\tau }}\\&\quad = (1-\alpha \tau )^{-\frac{1}{\tau }} h^{\frac{1}{\tau }-\alpha } \lesssim h^{\frac{1}{\tau }-\alpha -\varepsilon }T^{\varepsilon }, \end{aligned}$$

where the last inequality uses \( h\le t\le T_0\).

Putting together these estimates,

$$\begin{aligned}&|\!|{} T_h^\mathbb{R }(\Phi _{\alpha ,t})-\Phi _{\alpha ,t} |\!|{} _{L^{\tau }(\mathbb{R },Y)}\\&\quad \le h^{\frac{1}{\tau }-\alpha -\varepsilon }T_0^{\varepsilon } |\!|{} \Phi |\!|{} _{L^{\infty }(0,T_0;Y)} + T_0^{\frac{1}{q^{\prime }}-\alpha }|\!|{} T_h^\mathbb{R }(\Phi )1_{[0,t-h]}-\Phi |\!|{} _{L^q(0,t;Y)}.\\&\quad = h^{\frac{1}{\tau }-\alpha -\varepsilon }T_0^{\varepsilon } |\!|{} \Phi |\!|{} _{L^{\infty }(0,T_0;Y)} + T_0^{\frac{1}{q^{\prime }}-\alpha }|\!|{} T_h^I(\Phi )-\Phi |\!|{} _{L^q(0,t;Y)}. \end{aligned}$$

Next suppose \(h>t\). In that case:

$$\begin{aligned} |\!|{} T_h^\mathbb{R }(\Phi _{\alpha ,t})-\Phi _{\alpha ,t} |\!|{} _{L^{\tau }(\mathbb{R },Y)}&= 2|\!|{} \Phi _{\alpha ,t} |\!|{} _{L^{\tau }(\mathbb{R },Y)}\\&\lesssim t^{\frac{1}{\tau }-\alpha }|\!|{} \Phi |\!|{} _{L^{\infty }(0,T_0;Y)} \le h^{\frac{1}{\tau }-\alpha -\varepsilon }T_0^{\varepsilon }|\!|{} \Phi |\!|{} _{L^{\infty }(0,T_0;Y)}, \end{aligned}$$

this time using \(t^{\frac{1}{\tau }-\alpha }\le t^{\frac{1}{\tau }-\alpha -\varepsilon }T_0^\varepsilon \) and \(t\le h\).

It follows that

$$\begin{aligned} |\!|{} \Phi _{\alpha ,t} |\!|{} _{B_{\tau ,\tau }^{\frac{1}{\tau }\!-\!\frac{1}{2}}(\mathbb{R },Y)}\!\!&= \!\! |\!|{} \Phi _{\alpha ,t}|\!|{} _{L^{\tau }(\mathbb{R },Y)} \!+\! \left( \int _{0}^{1}\rho ^{-1+\frac{\tau }{2}}\sup _{|h|<\rho }|\!|{} T_h^\mathbb{R }(\Phi _{\alpha ,t})\!-\!\Phi _{\alpha ,t} |\!|{} _{L^{\tau }(\mathbb{R },Y)}^{\tau }\frac{d\rho }{\rho }\right) ^{\frac{1}{\tau }}\\&\lesssim T_0^{\frac{1}{\tau }-\alpha } |\!|{} \Phi |\!|{} _{L^{\infty }(0,T_0;Y)} +T_0^{\frac{1}{q^{\prime }}-\alpha }\\&\times \left( \int _{0}^{1}\rho ^{-1+\frac{\tau }{2}}\sup _{|h|<\rho }|\!|{} T_h^I(\Phi )-\Phi |\!|{} _{L^{q}(0,t;Y)}^{\tau }\frac{d\rho }{\rho }\right) ^{\frac{1}{\tau }}\\&+ T_0^{\varepsilon } \left( \int _{0}^{1} \rho ^{\tau (\frac{1}{2} -\alpha -\varepsilon )} \frac{d\rho }{\rho }\right) ^{\frac{1}{\tau }}|\!|{} \Phi |\!|{} _{L^{\infty }(0,T_0;Y)}\\&\lesssim (T_0^{\frac{1}{\tau }-\alpha }\vee T_0^{\frac{1}{q^{\prime }}-\alpha } \vee T_0^\varepsilon )\left( |\!|{} \Phi |\!|{} _{L^{\infty }(0,T_0;Y)} + |\!|{} \Phi |\!|{} _{B^{\frac{1}{\tau }-\frac{1}{2}}_{q,\tau }(0,t;Y)}\right) . \end{aligned}$$

This gives the result, noting that \(T_0^{\alpha }\vee T_0^{\beta } \le T_0^{\min \{\alpha ,\beta \}}(1\vee T^{|\alpha -\beta |})\) for all \(T_0\in [0,T]\).

\(\square \)

This lemma will be used to deduce the following estimate.

Lemma 9.4

Let \(X\) be a umd Banach space, \(H\) a Hilbert space, and suppose \(G:[0,T]\times \Omega \rightarrow {\fancyscript{L}}(H,X)\) satisfies \((\mathbf{G}^{\prime })\) of Sect. 5. For all \(0\le \alpha <\frac{1}{2}\) and \(\varepsilon >0\) there for any \(T>0\) there exists a constant \(C>0\) such that for any \(n\in \mathbb{N }\), and any sequence \((B_j)_{j=0}^{n}\) in \( L^p(\Omega ;X),\,p\in [2,\infty )\), we have:

$$\begin{aligned} \sup _{0\le t \le T} |\!|{} s&\mapsto (t-s)^{-\alpha }\left[ G(s,B_{\underline{s}n/T}))-G(\underline{s},B_{\underline{s}n/T}))\right] |\!|{} _{L^p(\Omega ;\gamma (0, t;H,X_{\theta _G}))} \\&\le Cn^{-\zeta _{\max }+\varepsilon }\left( 1+\sup _{0\le j\le n}|\!|{} B_j |\!|{} _{L^p(\Omega ;X)}\right) . \end{aligned}$$

Proof

Without loss of generality we may assume \(\varepsilon < \frac{1}{2}-\alpha \). Set \(q=(\frac{1}{\tau }-\frac{1}{2}+\varepsilon )^{-1}\), so that \(\frac{1}{\tau }-\frac{1}{2}<\frac{1}{q}<\frac{1}{\tau }-\alpha \). For \(s\in [0,T)\) define

$$\begin{aligned} \Phi (s):= G(s,B_{\underline{s}n/T}))-G(\underline{s},B_{\underline{s}n/T}). \end{aligned}$$

Note that as \(p\ge 2\), the type of \(L^p(\Omega ,X_{\theta _G})\) is the same as the type of \(X\). By embedding (2.6), Lemma 9.3 and isomorphism (2.3) we have:

$$\begin{aligned}&\sup _{0\le t \le T} |\!|{} s\mapsto (t-s)^{-\alpha }\Phi (s)|\!|{} _{\gamma (0,t;H,L^p(\Omega ;X_{\theta _G}))} \nonumber \\&\quad \lesssim |\!|{} \Phi |\!|{} _{B^{\frac{1}{\tau }-\frac{1}{2}}_{q,\tau }(0,T;L^p(\Omega ;\gamma (H,X_{\theta _G})))} + |\!|{} \Phi |\!|{} _{L^{\infty }(0,T;L^p(\Omega ;\gamma (H,X_{\theta _G})))}. \end{aligned}$$
(9.4)

By the Hölder assumption of \((\mathbf{G}^{\prime })\) we have:

$$\begin{aligned} |\!|{} \Phi |\!|{} _{L^{\infty }(0,T;L^p(\Omega ;\gamma (H,X_{\theta _G})))}&\lesssim n^{-\zeta _{\max }-\frac{1}{\tau }+\frac{1}{2}} \left( 1 + \sup _{0\le j\le n}|\!|{} B_j|\!|{} _{L^{p}(\Omega ;X)}\right) \nonumber \\&= n^{-\zeta _{\max }-\frac{1}{q}+\varepsilon }\left( 1 + \sup _{0\le j\le n}|\!|{} B_j|\!|{} _{L^{p}(\Omega ;X)}\right) .\qquad \qquad \end{aligned}$$
(9.5)

In order to estimate the Besov norm on the right-hand side of (9.4) we fix \(\rho \in (0,1)\), and let \(|h|< \rho \). We have, with \(I = [0,T]\),

$$\begin{aligned} \begin{aligned}&|\!|{} T_h^I \Phi (s) - \Phi (s) |\!|{} _{L^p(\Omega ;\gamma (H,\theta _G))}\\&\le \left\{ \begin{aligned}&|\!|{} G(s+h,B_{\underline{s}n/T}) - G(s,B_{\underline{s}n/T})|\!|{} _{L^p(\Omega ;\gamma (H,X_{\theta _G}))},&\underline{s+h}=\underline{s}, \ s+h\in [0,T],\\&2|\!|{} \Phi |\!|{} _{L^{\infty }(0,T;L^p(\Omega ;\gamma (H,X_{\theta _G})))},&\mathrm{otherwise}. \end{aligned}\right. \end{aligned} \end{aligned}$$

For \(|h|\ge \frac{T}{n}\) one never has \(\underline{s+h}=\underline{s}\) and thus it follows from the above and (9.5) that

$$\begin{aligned} |\!|{} T_h^I\Phi -\Phi |\!|{} _{L^q(0,T;L^p(\Omega ;\gamma (H,X_{\theta _G})))}&\lesssim n^{-\zeta _{\max }-\frac{1}{q}+\varepsilon }\left( 1 + \sup _{0\le j\le n}|\!|{} B_j|\!|{} _{L^p(\Omega ;X)}\right) \\&\lesssim |h|^{\frac{1}{q}}n^{-\zeta _{\max }+\varepsilon }\left( 1 + \sup _{0\le j\le n}|\!|{} B_j|\!|{} _{L^p(\Omega ;X)}\right) . \end{aligned}$$

On the other hand, for \(h< \frac{T}{n}\) and \(\underline{s+h} = \underline{s}\) we obtain, by \((\mathbf{G}^{\prime })\):

$$\begin{aligned}&|\!|{} G(s+h,B_{\underline{s+h}n/T}) - G(s,B_{\underline{s}n/T})|\!|{} _{L^p(\Omega ;\gamma (H,X_{\theta _G}))} \\&\quad \lesssim |h|^{\zeta _\mathrm{max} + \frac{1}{\tau }-\frac{1}{2}} (1+ |\!|{} B_{\underline{s}n/T}|\!|{} _{L^p(\Omega ;X)}) \\&\quad \le |h|^{\frac{1}{q}}\left( \tfrac{T}{n}\right) ^{\zeta _\mathrm{max} + \frac{1}{\tau }-\frac{1}{2}-\frac{1}{q}} \left( 1+ \sup _{0\le j\le n}|\!|{} B_j|\!|{} _{L^p(\Omega ;X)}\right) \\&\quad \lesssim |h|^{\frac{1}{q}} n^{-\zeta _\mathrm{max} + \varepsilon }\left( 1+ \sup _{0\le j\le n}|\!|{} B_j|\!|{} _{L^p(\Omega ;X)}\right) . \end{aligned}$$

For \(|h|<\frac{T}{n}\) observe that \(|\{ s\in [0,T]: \underline{s+h} \ne \underline{s}\}|=n|h|\). Thus for \(|h|<\frac{T}{n}\) we have, by the above estimate and (9.5):

$$\begin{aligned}&|\!|{} T_h^I\Phi -\Phi |\!|{} _{L^q(0,T;L^p(\Omega ;\gamma (H,X_{\theta _G}))} \\&\quad \lesssim (T-n|h|)^{\frac{1}{q}}|h|^{\frac{1}{q}} n^{-z\eta _\mathrm{max} + \varepsilon } \left( 1+ \sup _{0\le j\le n}|\!|{} B_j|\!|{} _{L^p(\Omega ;X)}\right) \\&\qquad +(n|h|)^{\frac{1}{q}}n^{-\zeta _{\max }-\frac{1}{q}+\varepsilon } \left( 1+ \sup _{0\le j\le n}|\!|{} B_j|\!|{} _{L^p(\Omega ;X)}\right) \\&\quad \lesssim |h|^{\frac{1}{q}} n^{-\zeta _\mathrm{max} + \varepsilon } \left( 1+ \sup _{0\le j\le n}|\!|{} B_j|\!|{} _{L^p(\Omega ;X)}\right) . \end{aligned}$$

Collecting these estimates we find:

$$\begin{aligned} \sup _{|h|< \rho } |\!|{} T_h^I\Phi -\Phi |\!|{} _{L^q(0,T;L^p(\Omega ;\gamma (H,X_{\theta _G}))} \lesssim \rho ^{\frac{1}{q}}n^{-\zeta _{\max }+\varepsilon } \left( 1 + \sup _{0\le j\le n}|\!|{} B_j |\!|{} _{L^p(\Omega ;X)}\right) . \end{aligned}$$

Because \(\frac{1}{q}>\frac{1}{\tau }-\frac{1}{2}\) it follows that

$$\begin{aligned}&|\!|{} \Phi |\!|{} _{B^{\frac{1}{\tau }-\frac{1}{2}}_{q,\tau }(0,T;L^p(\Omega ;\gamma (H,X_{\theta _G})))}\\&\quad \quad \lesssim |\!|{} \Phi |\!|{} _{L^q(0,T;\gamma (H,L^p(\Omega ;X_{\theta _G})))} + n^{-z\eta _{\max }+\varepsilon } \left( 1+ \sup _{0\le j\le n}|\!|{} B_j|\!|{} _{L^p(\Omega ;X)}\right) \\&\quad \quad \lesssim n^{-z\eta _{\max }+\varepsilon }\left( 1+ \sup _{0\le j\le n}|\!|{} B_j|\!|{} _{L^p(\Omega ;X)}\right) . \end{aligned}$$

Inserting the above and (9.5) into (9.4) gives the required result. \(\square \)

The final lemma is an elementary calculus fact.

Lemma 9.5

For all \(0\le \delta ,\theta <\frac{1}{2}\) there exists a constant \(C\), depending only on \(\delta \) and \(\theta \), such that for all \(0\le u \le t\), all \(T>0\) and all \(n\in \mathbb{N }\):

$$\begin{aligned} \int _{\underline{u}}^{t} (t-s)^{-2\theta }(\overline{s}-\underline{u})^{-2\delta } \,ds \le C^2 \left( t+\tfrac{T}{n}-u\right) ^{1-2\delta -2\theta }. \end{aligned}$$

Proof

If \(t-\underline{u}\le \tfrac{T}{n}\), then for \(s\in [\underline{u},t)\) one has \(\overline{s}-\underline{u}=\overline{u}-\underline{u}=\tfrac{T}{n}\) so

$$\begin{aligned} \int _{\underline{u}}^{t} (t-s)^{-2\theta }(\overline{s}-\underline{u})^{-2\delta }\,ds = (1-2\theta )^{-1} \left( \tfrac{T}{n}\right) ^{-2\delta }(t-\underline{u})^{1-2\theta }. \end{aligned}$$

Note that \(\tfrac{T}{n}\ge \frac{1}{2}\left( t+\tfrac{T}{n}-u\right) \) and \((t-\underline{u})^{1-2\theta }\le \left( t+\tfrac{T}{n}-u\right) ^{1-2\theta }\). Thus:

$$\begin{aligned} \int _{\underline{u}}^{t} (t-s)^{-2\theta }(\overline{s}-\underline{u})^{-2\delta }\,ds \le 2^{2\delta } (1-2\theta )^{-1} \left( t+\tfrac{T}{n}-u\right) ^{1-2\delta -2\theta }. \end{aligned}$$

On the other hand if \(t-\underline{u}>\frac{T}{n}\) then \({t-\underline{u}} < {t+T/n-u} < 2({t-\underline{u}})\). Moreover, \(\overline{s}-\underline{u} \ge s-\underline{u},\) and the substitution \(v={(s-\underline{u})}/{(t-\underline{u})}\) gives:

$$\begin{aligned} \int _{\underline{u}}^{t} (t-s)^{-2\theta }(\overline{s}-\underline{u})^{-2\delta }\,ds&\le \int _{\underline{u}}^{t}(t-s)^{-2\theta }(s-\underline{u})^{-2\delta }\,ds\\&\le (t-\underline{u})^{1-2\delta -2\theta } \int _{0}^{1} (1-v)^{-2\theta }v^{-2\delta }\,dv \\&\le 2^{(2\delta +2\theta -1)^+}\left( t+\tfrac{T}{n}-u\right) ^{1-2\delta -2\theta }\int _{0}^{1} (1-v)^{-2\theta }v^{-2\delta }\,dv. \end{aligned}$$

\(\square \)

Appendix B: Estimates for stochastic convolutions

We shall present two estimates for stochastic convolutions. Throughout this section, \(Y\) is a umd Banach space and \(\tau \in (1,2]\) denotes its type. Moreover, \(S\) is an analytic semigroup on \(Y\).

Roughly speaking, Lemma 10.1 is contained in Step 2 of the proof of [36, Proposition 6.1], but there the space \(V^{\alpha ,p}_\mathrm{c}([0,T]\times \Omega ;X)\) is considered [see (2.16)]. For completeness we give the proof below.

Lemma 10.1

Let \(\delta \in (-\frac{3}{2}+\frac{1}{\tau },\infty ),\,\alpha \in [0,\frac{1}{2})\), and \(p\in [2,\infty )\). For all \(\Phi \in L^{\infty }(0,T;L^p(\Omega ;Y_{\delta }))\), the convolution \(S*\Phi \) belongs to \({\fancyscript{V}}^{\alpha ,p}_{\infty }([0,T]\times \Omega ;Y)\), and for all \(T_0\in [0,T]\) we have:

$$\begin{aligned} |\!|{} S*\Phi |\!|{} _{{\fancyscript{V}}^{\alpha ,p}_{\infty }([0,T_0]\times \Omega ;Y)} \lesssim (T_0^{1+(\delta \wedge 0)}+T_0^{\frac{1}{2}-\alpha })|\!|{} \Phi |\!|{} _{L^{\infty }(0,T_0;L^p(\Omega ;Y_{\delta }))}. \end{aligned}$$

Proof

By analyticity of the semigroup [Eq. (2.7)] we have, for \(t\in [0,T_0]\):

$$\begin{aligned} |\!|{} (S*\Phi )(t) |\!|{} _{L^p(\Omega ;Y)}&\lesssim \int _{0}^{t} (t-s)^{\delta \wedge 0}\,ds |\!|{} \Phi |\!|{} _{L^{\infty }(0,T_0;L^p(\Omega ;Y_{\delta }))}\\&\le T_0^{1+(\delta \wedge 0)}|\!|{} \Phi |\!|{} _{L^{\infty }(0,T_0;L^p(\Omega ;Y_{\delta }))}. \end{aligned}$$

Taking the supremum over \(t\in [0,T_0]\) gives the estimate in \(L^{\infty }(0,T_0;L^p(\Omega ,Y))\).

It remains to prove the estimate in the weighted \(\gamma \)-norm. Fix \(t\in [0,T_0]\). As \(p\ge 2\), it follows that \(L^p(\Omega ,Y)\) has type \(\tau \in [1,2]\) whenever \(Y\) has type \(\tau \). Moreover, if we interpret \(A\) as an operator on \(L^p(\Omega ,Y)\) acting pointwise, then \((L^p(\Omega ,Y))_{\delta }=L^p(\Omega ,Y_{\delta })\). Thus by [36, Proposition 3.5] with \(E=L^p(\Omega ,Y),\,\eta =0\), and \(\theta =-\delta \) we have, as \(\delta >-\frac{3}{2}+\frac{1}{\tau }\);

$$\begin{aligned} |\!|{} s\mapsto (t-s)^{-\alpha }(S*\Phi )(s)|\!|{} _{\gamma (0,t;L^p(\Omega ,Y))} \lesssim T_0^{\frac{1}{2}-\alpha }|\!|{} \Phi |\!|{} _{L^\infty (0,T_0;L^p(\Omega ;Y_{\delta }))}. \end{aligned}$$

Taking the supremum over \(t\in [0,T_0]\) gives the desired estimate. \(\square \)

We proceed with the second Lemma.

Lemma 10.2

Let \(\delta \in (-\frac{1}{2},\infty )\) and \(\alpha \in [0,\frac{1}{2})\). Suppose \(\Phi : [0,T]\times \Omega \rightarrow {\fancyscript{L}}(H,Y_\delta )\) is strongly measurable and adapted and satisfies

$$\begin{aligned} \sup _{0\le t\le T}|\!|{} s\mapsto (t-s)^{-\alpha } \Phi (s) |\!|{} _{L^p(\Omega ;\gamma (0,T;H,Y_{\delta }))}<\infty , \end{aligned}$$
(10.1)

for some \(p\in (1,\infty )\).

  • (i) If \(0\le \beta < \min \{\frac{1}{2}-\alpha ,\frac{1}{2}+\delta \}\), then there exists an \(\epsilon >0\) such that for all \(T_0\in [0,T]\):

    $$\begin{aligned}&\sup _{0\le t\le T_0}\left| \!\left| s \mapsto (t-s)^{-\alpha -\beta } \int _0^{s} S(s-u)\Phi (u)\, dW_H(s)\right| \!\right| _{L^p(\Omega ;\gamma (0,t;Y))}\\&\lesssim T_0^{\epsilon }\sup _{0\le t\le T_0}|\!|{} s\mapsto (t-s)^{-\alpha } \Phi (s) |\!|{} _{L^p(\Omega ;\gamma (0,t;H,Y_{\delta }))}. \end{aligned}$$
  • (ii) If, moreover, \(\alpha >-\delta \), then there exists an \(\epsilon >0\) such that for all \(T_0\in [0,T]\):

    $$\begin{aligned}&\left| \!\left| s \mapsto \int _{0}^{s} S(s-u)\Phi (u)\,dW_H(u) \right| \!\right| _{{\fancyscript{V}}^{\alpha +\beta ,p}_{\infty }([0,T_0]\times \Omega ;Y)} \\&\quad \; \lesssim T_0^{\epsilon }\sup _{0\le t\le T_0}|\!|{} s\mapsto (t-s)^{-\alpha } \Phi (s) |\!|{} _{L^p(\Omega ;\gamma (0,t;H,Y_{\delta }))}. \end{aligned}$$

Proof

Fix \(t\in [0,T_0]\). Let \(\epsilon >0\) be such that \(\epsilon <\frac{1}{2}-\delta ^- -\beta \). Here \(\delta ^-= (-\delta )\vee 0\). We apply Lemma 9.2 with \(X_1=Y_\delta ,\,X_2=Y,\,R=S= [0,t]\), and the functions \(\Phi _1(u)=(t-u)^{-\alpha }\Phi (u),\,\Phi _2(r) = \frac{d}{dr}[r^{\delta ^{-}+\epsilon }S(r)]\), and \(f(r,u)(s)= (t-s)^{-\alpha -\beta }(s-u)^{-\delta ^- -\epsilon }(t-u)^{\alpha }1_{0\le r\le s-u}\). By (2.7) we have \(|\!|{} \Phi _2(r)|\!|{} _{{\fancyscript{L}}(X_{\delta },X)} \lesssim r^{-1+\varepsilon }\) for \(r\in [0,T]\). From the lemma it follows that:

$$\begin{aligned}&\left| \!\left| s \mapsto (t-s)^{-\alpha -\beta }\int _{0}^{s} S(s-u)\Phi (u)\,dW_H(u)\right| \!\right| _{L^p(\Omega ;\gamma (0, t;Y))} \\&\quad \; \lesssim t^{\frac{1}{2}-\beta -\delta ^-}|\!|{} s\mapsto (t-s)^{-\alpha }\Phi (s)|\!|{} _{L^p(\Omega ;\gamma (0,t;H,Y_\delta ))}. \end{aligned}$$

Taking the supremum over \(t\in [0,T_0]\) we obtain (i).

For the estimate in \({\fancyscript{V}}^{\alpha +\beta ,p}_{\infty }\)-norm it remains, by part (i), to prove the estimate in \(L^{\infty }(0,T_0;L^p(\Omega ,Y_{\delta }))\). Let \(\epsilon < \min \{\alpha +\delta ,\frac{1}{2}-\delta ^{-}-\beta \}\). By Lemma 2.4 (apply part (1) if \(\delta \in (-\frac{1}{2}, 0]\) and part (2) if \(\delta \in [0,\infty )\)) the operators \(r^\alpha S(r),\,r\in [0,t]\), are \(\gamma \)-bounded from \(Y_\delta \) to \(Y\), with \(\gamma \)-bound at most \(C t^{\alpha +\delta }\) with \(C\) independent of \(t\in [0,T]\). Hence, by the \(\gamma \)-multiplier theorem, for all \(t\in [0,T]\),

$$\begin{aligned} \left| \!\left| \int _{0}^{t} S(t-s)\Phi (s)\,dW_H(s)\right| \!\right| _{L^p(\Omega ;Y)} \lesssim t^{\alpha +\delta }|\!|{} s\mapsto (t-s)^{-\alpha } \Phi (s) |\!|{} _{L^p(\Omega ;\gamma (0,t;H,Y_{\delta }))}. \end{aligned}$$

The norm estimate in \(L^{\infty }(0,T;L^p(\Omega ;Y_{\delta }))\) is obtained by taking the supremum over \(t\in [0,T]\). \(\square \)

Appendix C: Existence and uniqueness

The aim of this section is to outline the proof of Theorem 2.7. The setting is always that of Sect. 2.

Proof of Theorem 2.7

Assume first that \(\alpha \in [0,\frac{1}{2})\) is so large that \(\alpha +\theta _G>\eta \). Let \(p\in [2,\infty )\) and \(T_0\in [0,T]\) be fixed. For \(\Phi \in {\fancyscript{V}}^{\alpha ,p}_{\infty }([0,T_0]\times \Omega ;X_\eta )\) define

$$\begin{aligned} L(\Phi )(t):= S(t)x_0 + \int _{0}^{t}S(t-s)F(s,\Phi (s))\,ds + \int _{0}^{t}S(t-s)G(s,\Phi (s))\,dW_H(s). \end{aligned}$$

Copying Step 1 of the proof of [36, Proposition 6.1] without changes, and substituting Steps 2 and 3 by the Lemmas 10.1 and 10.2 above, we find that there exists an \(\varepsilon _0>0\) and a \(C>0\) such that \(L:{\fancyscript{V}}^{\alpha ,p}_{\infty }([0,T_0]\times \Omega ;X_\eta ) \rightarrow {\fancyscript{V}}^{\alpha ,p}_{\infty }([0,T_0]\times \Omega ;X_\eta )\) and

$$\begin{aligned} |\!|{} L(\Phi )|\!|{} _{{\fancyscript{V}}^{\alpha ,p}_{\infty }([0,T_0]\times \Omega ;X_\eta )}&\le C|\!|{} x_0 |\!|{} _{X} + CT^{\varepsilon _0}|\!|{} F(\cdot ,\Phi (\cdot ))|\!|{} _{L^{\infty }(0,T_0;L^p(\Omega ;X_{\theta _F}))}\\&+ CT^{\varepsilon _0}\sup _{0\le t\le T_0}|\!|{} s\mapsto (t-s)^{-\alpha } G(s,\Phi (s))|\!|{} _{L^p(\Omega ;\gamma (0,t;X_{\theta _G}))}\\&\le C|\!|{} x_0 |\!|{} _{X} \\&+ C (M(F) + M(G)) T_0^{\varepsilon _0}(1+|\!|{} \Phi |\!|{} _{{\fancyscript{V}}^{\alpha ,p}_{\infty }([0,T_0]\times \Omega ;X_\eta )}), \end{aligned}$$

where in the last line we used (F) and (2.12). Moreover,

$$\begin{aligned}&|\!|{} L(\Phi _1)-L(\Phi _2)|\!|{} _{{\fancyscript{V}}^{\alpha ,p}_{\infty }([0,T_0]\times \Omega ;X_\eta )}\\&\quad \le C (\mathrm{Lip}(F) + \mathrm{Lip}_{\gamma }(G)) T_0^{\varepsilon _0}|\!|{} \Phi _1 - \Phi _2 |\!|{} _{{\fancyscript{V}}^{\alpha ,p}_{\infty }([0,T_0]\times \Omega ;X_\eta )}, \end{aligned}$$

where again we used (F) and (2.11).

Thus by a fixed-point argument, for sufficiently small \(T_0\) there exists a unique process \(\Phi \in {\fancyscript{V}}^{\alpha ,p}_{\infty }([0,T_0]\times \Omega ;X_\eta )\) satisfying (2.13) on the interval \([0,T_0]\). By repeating this construction a finite number of times, each time taking the final value of the previous step as the initial value of the next, we obtain a solution on \([0,T]\).

So far, we have proved existence and uniqueness under the additional assumption \(\alpha +\theta _G>\eta \). Existence in \({\fancyscript{V}}^{\alpha ,p}_{\infty }([0,T]\times \Omega ;X_\eta )\) for arbitrary \(\alpha \in [0,\frac{1}{2})\) follows from (2.9). It remains to prove uniqueness for arbitrary \(\alpha \in [0,\frac{1}{2})\).

Let \(\alpha \in [0,\frac{1}{2})\) and let \(\Phi \in {\fancyscript{V}}^{\alpha ,p}_{\infty }([0,T]\times \Omega ;X_{\eta })\). Viewing \(F\) as a mapping from \([0,T]\times X_\eta \) to \(X_{\theta _F}\) (as \(\eta \ge 0\)), we have \(F(\cdot ,\Phi (\cdot )) \in {\fancyscript{V}}^{\alpha ,p}_{\infty }([0,T]\times \Omega ;X_{\theta _F})\). Then, by Lemma 10.1 with \(\delta =\theta _F-\eta \) and \(Y = X_\eta \) (and \(\tilde{\alpha }= \alpha +\beta \) ), we find \(S*F(\cdot ,\Phi (\cdot ))\in {\fancyscript{V}}^{\alpha +\beta ,p}_{\infty }([0,T]\times \Omega ;X_{\eta })\) for all \(\beta \in [0,\frac{1}{2}-\alpha )\).

By part (i) in Lemma 10.2 (with \(Y=X_{\eta }\) and \(\delta = \theta _G-\eta \)) and (2.12) we have, for all \(\beta \in [0,\frac{1}{2}-\alpha )\) such that \(\beta <\frac{1}{2}+\theta _G-\eta \):

$$\begin{aligned}&\sup _{0\le t\le T} \left| \!\left| s \mapsto (t-s)^{-\alpha -\beta } \int _{0}^{s} S(s-u)G(u,\Phi (u))\,dW_H(u)\right| \!\right| _{L^p(\Omega ,\gamma (0,t;X_\eta ))}\\&\quad \lesssim \sup _{0\le t\le T} |\!|{} s\mapsto (t-s)^{-\alpha } G(s,\Phi (s))|\!|{} _{L^p(\Omega ;\gamma (0,t;H,X_{\theta _G}))}\\&\quad \le |\!|{} \Phi |\!|{} _{{\fancyscript{V}}^{\alpha ,p}_{\infty }([0,T]\times \Omega ;X_\eta )}. \end{aligned}$$

Since also \(S(\cdot )x_0 \in {\fancyscript{V}}^{\alpha +\beta ,p}_{\infty }([0,T]\times \Omega ;X_\eta )\) for all \(\beta \in [0,\frac{1}{2}-\alpha )\), we see that if \(\alpha \in [0,\frac{1}{2})\) and \(\Phi \in {\fancyscript{V}}^{\alpha ,p}_{\infty }([0,T]\times \Omega ;X_{\eta })\) satisfies (2.13), then \(\Phi \in {\fancyscript{V}}^{\alpha +\beta ,p}_{\infty }([0,T]\times \Omega ;X)\) for all \(\beta \in [0,\frac{1}{2}-\alpha )\) such that \(\beta <\frac{1}{2}+\theta _G-\eta \). Repeating this argument a finite number of steps if necessary, we obtain that \(\Phi \in {\fancyscript{V}}^{\alpha +\beta ,p}_{\infty }([0,T]\times \Omega ;X)\) for all \(\beta \in [0,\frac{1}{2}-\alpha )\). As uniqueness of a process in \({\fancyscript{V}}^{\alpha ,p}_{\infty }([0,T]\times \Omega ;X)\) satisfying (2.13) has been established for \(\alpha >\eta -\theta _G\) this completes the proof. \(\square \)

Remark 11.1

Inspection of the proofs of the main theorems reveals that uniqueness is only used for large \(\alpha \in [0,\frac{1}{2})\). As a consequence, the last part of the above proof is not needed for our purposes. It has been included for completeness reasons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, S., van Neerven, J. Pathwise Hölder convergence of the implicit-linear Euler scheme for semi-linear SPDEs with multiplicative noise. Numer. Math. 125, 259–345 (2013). https://doi.org/10.1007/s00211-013-0538-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0538-4

Mathematics Subject Classification (2000)

Navigation