Skip to main content
Log in

Optimal \(L^2, H^1\) and \(L^\infty \) analysis of finite volume methods for the stationary Navier–Stokes equations with large data

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Previous work on the stability and convergence analysis of numerical methods for the stationary Navier–Stokes equations was carried out under the uniqueness condition of the solution, which required that the data be small enough in certain norms. In this paper an optimal analysis for the finite volume methods is performed for the stationary Navier–Stokes equations, which relaxes the solution uniqueness condition and thus the data requirement. In particular, optimal order error estimates in the \(H^1\)-norm for velocity and the \(L^2\)-norm for pressure are obtained with large data, and a new residual technique for the stationary Navier–Stokes equations is introduced for the first time to obtain a convergence rate of optimal order in the \(L^2\)-norm for the velocity. In addition, after proving a number of additional technical lemmas including weighted \(L^2\)-norm estimates for regularized Green’s functions associated with the Stokes problem, optimal error estimates in the \(L^\infty \)-norm are derived for the first time for the velocity gradient and pressure without a logarithmic factor \(O(|\log h|)\) for the stationary Naiver–Stokes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24, 777–787 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brenner, S., Scott, L.R.: The mathematical theory of finite elements. Springer, New York (1991)

    Google Scholar 

  4. Brezzi, F., Rappaz, J., Raviart, P.-A.: Finite element approximation of nonlinear problems. Part I: Branch of nonsingular solutions. Numer. Math. 36, 1–25 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, Z.: Finite element methods and their applications. Spring, Heidelberg (2005)

    MATH  Google Scholar 

  6. Chen, Z., Li, R., Zhou, A.: A note on the optimal \(L^2\)-estimate of finite volume element method. Adv Comput Math 16, 291–303 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chou, S.H., Kwak, D.Y.: Analysis and convergence of a MAC scheme for the generalized Stokes problem. Numer. Meth. Partial Diff. Equ. 13, 147–162 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chou, S.H., Kwak, D.Y.: A covolume method based on rotated bilinears for the generalized Stokes problem. SIAM J. Numer. Anal. 35, 494–507 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chou, S.H., Li, Q.: Error estimates in \(L^2, H^1\) and \(L^{\infty }\) in co-volume methods for elliptic and parabolic problems: a unified approach. Math. Comp. 69, 103–120 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  11. Duran, R., Nochetto, R., Wang, J.: Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2-D. Math. Comp. 15, 491–506 (1988)

    Article  MathSciNet  Google Scholar 

  12. Ewing, R.E., Lazarov, R.D., Lin, Y.: Finite volume element approximations of nonlocal reactive flows in porous media. Numer. Methods Partial Differ. Equ. 16, 285–311 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39, 1865–1888 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Eymard, R., Herbin, R., Latché, J.C.: Convergence analysis of a colocated finite volume scheme for the incompressible Navier–Stokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal. 45, 1–36 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Frehse, J., Rannacher, R.: Finite volume element approximations of nonlocal reactive flows in porous media. Numer. Methods Partial Differ. Equ. 16, 285–311 (2000)

    Article  Google Scholar 

  16. Girault, V., Nochetto, R.H., Scott, R.: Maximum-norm stability of the finite element Stokes projection. J. Math. Pures Appl. 84, 279–330 (2005)

    MATH  MathSciNet  Google Scholar 

  17. Girault, V., Raviart, P.A.: Finite element methods for Navier–Stokes equations: theory and algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  18. He, Y., Li, J.: A stabilized finite element method based on local polynomial pressure projection for the stationary Navier–Stokes equation. Appl. Numer. Math. 58, 1503–1514 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem I: regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  20. Huang, J., Xi, S.: On the finite volume element method for general self-adjoint elliptic problems. SIAM J. Numer. Anal. 35, 1762–1774 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Li, J., Chen, Z.: A new stabilized finite volume method for the stationary Stokes equations. Adv. Comp. Math. 30, 141–152 (2009)

    Article  MATH  Google Scholar 

  22. Li, J., Chen, Z., He, Y.: A stabilized multi-level method for non-singular finite volume solutions of the stationary 3D Navier–Stokes equations. Numer. Math. 122, 279–304 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, J., Shen, L., Chen, Z.: Convergence and stability of a stabilized finite volume method for the stationary Navier–Stokes equations. BIT Numer. Math. 50, 823–842 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, J., Zhao, X., Wu, J.: Study of stabilization of the lower order finite volume methods for the incompressible flows. Acta Math. Sinica 56 (2013) (in Chinese)

  25. Li, R., Zhu, P.: Generalized difference methods for second order elliptic partial differential equations (I)-triangle grids. Numer. Math. J. Chinese Univ. 2, 140–152 (1982)

    Google Scholar 

  26. Li, R.: Generalized difference methods for a nonlinear Dirichlet problem. SIAM J. Numer. Anal. 24, 77–88 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  27. Silvester, D.J.: Stabilised mixed finite element methods. Numerical Analysis, Report No. 262 (1995)

  28. Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38, 437–445 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  29. Stenberg, R.: Analysis of mixed finite element methods for the Stokes problem: a unified approach. Math. Comp. 42, 9–23 (1984)

    MATH  MathSciNet  Google Scholar 

  30. Temam, R.: Navier–Stokes equations. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  31. Wang, J., Wang, Y., Ye, X.: A new finite volume method for the stokes problems. Int. J. Numer. Anal. Mod. 7, 281–302 (2010)

    MathSciNet  Google Scholar 

  32. Ye, X.: On the relationship between finite volume and finite element methods applied to the Stokes equations. Numer. Methods Partial Diff. Equ. 5, 440–453 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Additional information

Supported in part by NSF of China (No. 11071193), the NCET-11-1041, Natural Science New Star of Science and Technologies Research Plan in Shaanxi Province of China (No. 2011kjxx12), the Project-Sponsored by SRF for ROCS, SEM, China Postdoctoral Science Foundation funded project 2012M511973, the Key Project of Baoji university of Arts and Sciences (No. ZK12041), and NSERC/AERI/Foundation CMG Chair and iCORE Chair Funds in Reservoir Simulation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Chen, Z. Optimal \(L^2, H^1\) and \(L^\infty \) analysis of finite volume methods for the stationary Navier–Stokes equations with large data. Numer. Math. 126, 75–101 (2014). https://doi.org/10.1007/s00211-013-0556-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0556-2

Mathematics Subject Classification (2000)

Navigation