Skip to main content
Log in

A cell functional minimization scheme for domain decomposition method on non-orthogonal and non-matching meshes

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We are interested in a robust and accurate domain decomposition algorithm with interface conditions of Robin type on non-matching multiblock grids using a cell functional minimization scheme, which has a good performance on non-orthogonal meshes. In order to treat the non-matching grids at the interface, we introduce the \(L^2\) projection operator to ensure weak continuity of the primary unknown and of the normal flux across the non-matching interface. Furthermore, we prove the wellposedness of local and global problems and obtain as well an error estimate of first order in a discrete \(H^{1}\)-norm only using the \(L^{2}\) projection operator on the non-matching interface, as done in the matching case. Numerical results are presented in confirmation of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aavatsmark, I., Reiso, E., Teigland, R.: Control-volume discretization method for quadrilateral grids with faults and local refinements. Comput. Geosci. 5, 1–23 (2001)

    Article  MATH  Google Scholar 

  2. Achdou, Y., Japhet, C., Nataf, F., Maday, Y.: A new cement to glue non-conforming grids with Robin interface conditions: the finite volume case. Numer. Math. 92, 593–620 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bernardi, C., Maday, Y., Patera, A.: A new nonconforming approach to domain decomposition: the mortar element method. In: Brezis, H., Lions, J.L. (eds.) Nonlinear Partial Differential Equations and Their Applications. Pitman Research Notes in Mathematics Series, pp. 12–51. Longman, Harlow (1989)

  4. Berndt, M., Lipnikov, K., Shashkov, M., Wheeler, M.F., Yotov, I.: A mortar mimetic finite difference method on non-matching grids. Numer. Math. 102, 203–230 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bernier, C., Candus, E., Faille, I., Nataf, F.: Maillages non coincidents pour lamodélisation des écoulements en milieux poreux. Technical report 54332, IFP (2000)

  6. Brezzi, F., Lipnikov, K., Simoncini, V.: A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Mod. Methods Appl. Sci. 15, 1533–1551 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brezzi, F., Lipnikov, K., Shashkov, M., Simoncini, V.: A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Eng. 196, 3682–3692 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cautrés, R., Herbin, R., Hubert, F.: The Lions domain decompostion algorithm on nonmathcing cell-cenetered finite volume meshes. IMA J. Numer. Anal. 24, 465–490 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cautrés, R., Herbin, R., Hubert, F.: Finite volume scheme on non matching grids. Application to domain decomposition methods. In: Kroner, D., Herbin, R. (eds.) Finite Volume for Complex Applications III: Problems and Perspectives, pp. 141–148. Laboratoire d’Analyse, Topologie et Probabilités CNRS, Marseille (2002)

  10. Després, B., Joly, P., Roberts, J.: Domain decomposition method for the harmonic Maxwell equations. In: International symposium on iterative methods in linear algebra, pp. 475–484, North-Holland, Amsterdam (1992)

  11. Edwards, M.: Elimination of adaptive grid interface errors in the discrete cell centered pressure equation. J. Comput. Phys. 126, 356–372 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ewing, R.E., Lazarov, R.D., Vassilevski, P.S.: Local refinement techniques for elliptic problems on cell-centerd grids I. Error analysis. Math. Comput. 56, 437–461 (1991)

    MATH  MathSciNet  Google Scholar 

  13. Eymard, R., Gallouët, T., Herbin, R.: Finite Volume Methods (manuscript is an update of the preprint n0 97–19 du LATP, UMR6632, Marseille). Handbook of Numerical Analysis, vol.7, pp. 713–1020 (1997)

  14. Japhet, C., Nataf, F.: The best interface conditions for domain decomposition methods: absorbing boundary conditions. In: Tourrette, L., Halpern, L. (eds.) Absorbing Boundaries and Layers, Domain Decomposition Methods. Applications to Large Scale Computations, pp. 348–373. Nova Science Publishers, Huntington (2001)

  15. Lions, P.L.: On the Schwarz alternating method III: a variant for nonoverlapping subdomains. In: 3rd International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 202–203. SIAM, Philadelphia (1989)

  16. Lipnikov, K., Morel, J., Shashkov, M.: Mimetic finite difference methods for diffusion equations on nonorhogonal non-conformal meshes. J. Comput. Phys. 199, 589–597 (2004)

    Article  MATH  Google Scholar 

  17. Morel, J., Roberts, R., Shashkov, M.: A local support-operators diffusion discretization scheme for quadrilateral r-z meshes. J. Comput. Phys. 144, 17–51 (1998)

    Article  MathSciNet  Google Scholar 

  18. Nataf, F., Rogier, F., Sturler, E.: Domain decomposition methods for fluid dynamics. In: Sequeira, A. (ed.) Navier–Stokes Equations and Related Nonlinear Analysis, pp. 367–376. Plenum Press, New York (1995)

  19. Pember, R.B., Bell, J.B.: An adaptive Cartesian grid method for unsteady compressible flow in irregular regions. J. Comput. Phys. 120, 278–304 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Saas, L., Faille, I., Nataf, F., Willien, F.: Finite volume methods for domain decomposition on nonmatching grids with arbitrary interface conditions. SIAM J. Numer. Anal. 43, 860–890 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wu, J., Dai, Z., Gao, Z., Yuan, G.: Linearity preserving nine-point schemes for diffusion equation on distorted quadrilateral meshes. J. Comput. Phys. 229, 3382–3401 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Yin, L., Wu, J., Gao, Z.: The cell functional minimization scheme for diffusion problems on unstructured polygonal meshes. Accepted by Math. Model. Numer. Anal. (2014)

  23. Yin, L., Wu, J., Yao, Y.: A cell functional minimization scheme for parabolic problem. J. Comput. Phys. 229, 8935–8951 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zeeuw, D.D., Powell, K.G.: An adaptive refined Cartesian mesh solver for the Euler equations. J. Comput. Phys. 104, 56–68 (1993)

    Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers for their carefully readings and many useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiming Wu.

Additional information

This work is supported by the National Natural Science Foundation of China (No. 11271053, 91118001, 11135007), the Science Foundation of China Academy of Engineering Physics (No. 2011A0202012, 2013B0202034) and a grant from the Laboratory of Computational Physics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, L., Wu, J. & Yao, Y. A cell functional minimization scheme for domain decomposition method on non-orthogonal and non-matching meshes. Numer. Math. 128, 773–804 (2014). https://doi.org/10.1007/s00211-014-0623-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0623-3

Mathematics Subject Classification (2000)

Navigation