Skip to main content
Log in

A posteriori error estimation of hierarchical type for the Schrödinger operator with inverse square potential

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We develop an a posteriori error estimate for mixed boundary value problems of the form \((-\Delta +\fancyscript{V})u=f\), where the potential \(\fancyscript{V}\) may possess inverse-square singularities at finitely many points in the domain. We prove that our error estimate can be efficiently computed and is asymptotically identical to the actual error in the energy norm, on a family of geometrically graded meshes appropriate for singular solutions of such problems. Therefore, our estimate can be used for a practical stopping criterion. A variety of numerical experiments support our theoretical results. We also offer a direct convergence and effectivity comparison between the geometrically-graded meshes, which are based on a priori knowledge of possible singularities in the solution, and adaptively refined meshes driven by local error indicators associated with our a posteriori error estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics, vol. 140, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. Wiley-Interscience, New York (2000)

    Book  MATH  Google Scholar 

  3. Apel, T., Nicaise, S.: The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Methods Appl. Sci. 21(6), 519–549 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Araya, R., Poza, A.H., Stephan, E.P.: A hierarchical a posteriori error estimate for an advection-diffusion-reaction problem. Math. Models Methods Appl. Sci. 15(7), 1119–1139 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Babuška, I., Kellogg, R.B., Pitkäranta, J.: Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33(4), 447–471 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Băcuţă, C., Nistor, V., Zikatanov, L.: Improving the rate of convergence of high-order finite elements on polyhedra. I. A priori estimates. Numer. Funct. Anal. Optim. 26(6), 613–639 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Băcuţă, C., Nistor, V., Zikatanov, L.T.: Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps. Numer. Math. 100(2), 165–184 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bank, R.E.: Hierarchical Bases and the Finite Element Method. Acta Numerica, vol. 5. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  9. Bank, R.E.: PLTMG: A software package for solving elliptic partial differential equations. Users’ Guide 10.0. Technical report, University of California at San Diego, Department of Mathematics (2007)

  10. Bank, R.E., Grubišić, L., Ovall, J.S.: A framework for robust eigenvalue and eigenvector error estimation and Ritz value convergence enhancement. Appl. Numer. Math. 66, 1–29 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bank, R.E., Smith, R.K.: A posteriori error estimates based on hierarchical bases. SIAM J. Numer. Anal. 30(4), 921–935 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bank, R.E., Smith, R.K.: Mesh smoothing using a posteriori error estimates. SIAM J. Numer. Anal. 34(3), 979–997 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bank, R.E., Smith, R.K.: An algebraic multilevel multigraph algorithm. SIAM J. Sci. Comput. 23(5), 1572–1592 (2002). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators. II. General unstructured grids. SIAM J. Numer. Anal. 41(6), 2313–2332 (2003). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bornemann, F.A., Erdmann, B., Kornhuber, R.: A posteriori error estimates for elliptic problems in two and three space dimensions. SIAM J. Numer. Anal. 33(3), 1188–1204 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Brenner, S., Cui, J., Gudi, T., Sung, L.-Y.: Multigrid algorithms for symmetric discontinuous Galerkin methods on graded meshes. Numer. Math. 119(1), 21–47 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Brenner, S., Cui, J., Sung, L.-Y.: Multigrid methods for the symmetric interior penalty method on graded meshes. Numer. Linear Algebra Appl. 16(6), 481–501 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chen, L., Li, H.: Superconvergence of gradient recovery schemes on graded meshes for corner singularities. J. Comput. Math. 28(1), 11–31 (2010)

    MATH  MathSciNet  Google Scholar 

  20. Chen, L., Xu, J.: A posteriori error estimator by post-processing. In: Tang, T., Xu, J. (eds.) Adaptive Computations: Theory and Algorithms. Mathematics Monographs, Series 6. Science Press, Beijing (2007)

    Google Scholar 

  21. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics, vol. 1341. Springer, Berlin (1988)

    MATH  Google Scholar 

  22. Deuflhard, P., Leinen, P., Yserentant, H.: Concepts of an adaptive hierarchical finite element code. IMPACT Comput. Sci. Eng. 1(1), 3–35 (1989)

    Article  MATH  Google Scholar 

  23. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34(150), 441–463 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  25. Felli, V., Ferrero, A., Terracini, S.: Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential. J. Eur. Math. Soc. (JEMS) 13(1), 119–174 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Felli, V., Marchini, E., Terracini, S.: On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity. Discrete Contin. Dyn. Syst. 21(1), 91–119 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Østergaard, T.: Sørensen. Analytic structure of solutions to multiconfiguration equations. J. Phys. A 42(31):315208 (2009)

    Google Scholar 

  28. Grisvard, P.: Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston (1985)

  29. Grisvard, P.: Singularities in boundary value problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 22. Masson, Paris (1992)

  30. Grubišić, L., Ovall, J.S.: On estimators for eigenvalue/eigenvector approximations. Math. Comput. 78, 739–770 (2009)

    MATH  Google Scholar 

  31. Holst, M., Ovall, J.S., Szypowski, R.: An efficient, reliable and robust error estimator for elliptic problems in \(\mathbb{R}^3\). Appl. Numer. Math. 61(5), 675–695 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hunsicker, E., Li, H., Nistor, V., Ville, U.: Analysis of Schrödinger operators with inverse square potentials I: regularity results in 3D. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 55(103):157–178 (2012)

    Google Scholar 

  33. Hunsicker, E., Li, H., Nistor, V., Ville, U.: Analysis of Schrödinger operators with inverse square potentials II: FEM and approximation of eigenfunctions in the periodic case (2012, submitted)

  34. Key, K., Ovall, J.: A parallel goal-oriented adaptive finite element method for 2.5-d electromagnetic modelling. Geophys. J. Int. 186(1), 137–154 (2011)

    Article  Google Scholar 

  35. Kondrat’ev, V.A.: Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obšč. 16, 209–292 (1967)

    MATH  Google Scholar 

  36. Kozlov, V.A., Maz’ya, V.G., Rossmann, J.: Elliptic boundary value problems in domains with point singularities, Mathematical Surveys and Monographs, vol. 52. American Mathematical Society, Providence (1997)

  37. Kozlov, V.A., Maz’ya, V.G., Rossmann, J.: Spectral problems associated with corner singularities of solutions to elliptic equations, Mathematical Surveys and Monographs, vol. 85. American Mathematical Society, Providence (2001)

  38. Kreuzer, C., Siebert, K.G.: Decay rates of adaptive finite elements with Dörfler marking. Numer. Math. http://www.springerlink.com/content/86108538130mqtl7/ (2010)

  39. Li, H.: Finite element analysis for the axisymmetric Laplace operator on polygonal domains. J. Comput. Appl. Math. 235, 5155–5176 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Li, H., Mazzucato, A., Nistor, V.: Analysis of the finite element method for transmission/mixed boundary value problems on general polygonal domains. Electron. Trans. Numer. Anal. 37, 41–69 (2010)

    MATH  MathSciNet  Google Scholar 

  41. Li, H., Nistor, V.: Analysis of a modified Schrödinger operator in 2D: regularity, index, and FEM. J. Comput. Appl. Math. 224(1), 320–338 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  42. Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44(4), 631–658 (electronic) (2003) [Revised reprint of Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38(2), 466–488 (2000) (electronic); MR1770058 (2001g:65157)]

    Google Scholar 

  43. Moroz, S., Schmidt, R.: Nonrelativistic inverse square potential, scale anomaly, and complex extension. Preprint hep-th/0909.3477v3 (2010)

  44. Ovall, J.S.: Asymptotically exact functional error estimators based on superconvergent gradient recovery. Numer. Math. 102(3), 543–558 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  45. Ovall, J.S.: Function, gradient, and Hessian recovery using quadratic edge-bump functions. SIAM J. Numer. Anal. 45(3), 1064–1080 (2007). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  46. Raugel, G.: Résolution numérique par une méthode d’éléments finis du problème de Dirichlet pour le laplacien dans un polygone. C. R. Acad. Sci. Paris Sér. A-B 286(18), A791–A794 (1978)

    MathSciNet  Google Scholar 

  47. Rivara, M.-C.: New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations. Int. J. Numer. Methods Eng. 40(18), 3313–3324 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  48. Schatz, A.H., Sloan, I.H., Wahlbin, L.B.: Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point. SIAM J. Numer. Anal. 33(2), 505–521 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  49. Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7(2), 245–269 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  50. Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, New York (1996)

    MATH  Google Scholar 

  51. Wigley, N.M.: Asymptotic expansions at a corner of solutions of mixed boundary value problems. J. Math. Mech. 13, 549–576 (1964)

    MATH  MathSciNet  Google Scholar 

  52. Wu, H., Sprung, D.: Inverse-square potential and the quantum votex. Phys. Rev. A 49, 4305–4311 (1994)

    Article  Google Scholar 

  53. Xu, J., Zhang, Z.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comput. 73(247), 1139–1152 (2004). (electronic)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Alan Demlow for helpful remarks concerning Lemma 4.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Ovall.

Additional information

H. Li was partially supported by the NSF Grant DMS-1158839. J.S. Ovall was partially supported by the NSF Grant DMS-1216672.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ovall, J.S. A posteriori error estimation of hierarchical type for the Schrödinger operator with inverse square potential. Numer. Math. 128, 707–740 (2014). https://doi.org/10.1007/s00211-014-0628-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0628-y

Mathematics Subject Classification

Navigation