Skip to main content
Log in

Error estimate for a corrected Clenshaw–Curtis quadrature rule

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A new endpoint-corrected rule for the Clenshaw–Curtis (C–C) quadrature is proposed to improve the convergence rate. The error behavior is compared, analytically and numerically, to the C–C rule and related quadrature rules: the Fejér rules of the first and second kind and the Basu rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Basu, N.K.: Evaluation of a definite integral using Tchebyscheff approximation. Mathematica 13, 13–23 (1971)

    Google Scholar 

  2. Brass, H., Schmeisser, G.: Error estimates for interpolatory quadrature formulae. Numer. Math. 37, 371–386 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  4. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, Orland (1984)

  5. Favati, P., Lotti, G., Romani, F.: Bound on the error of Fejér and Clenshaw–Curtis type quadrature for analytic functions. Appl. Math. Lett. 6, 3–6 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Filippi, S.: Angenäherte Tschebyscheff-Approximation einer Stammfunktion - eine Modifikation des Verfahrens von Clenshaw und Curtis. Numer. Math. 6, 320–328 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hämmerlin, G., Hoffmann, K.-H.: Numerische Mathematik. Springer, Berlin (1989)

  8. Imhof, J.P.: On the method for numerical integration of Clenshaw and Curtis. Numer. Math. 5, 138–141 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kapur, S., Rokhlin, V.: High-order corrected trapezoidal rules for singular functions. SIAM J. Numer. Anal. 34, 1331–1356 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mason, J.C., Handscomb, D.: Chebyshev Polynomials. Chapman & Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  11. Notaris, S.E.: Interpolatory quadrature formulae with Chebyshev abscissae. J. Comput. Appl. Math. 133, 507–517 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sloan, I.H., Smith, W.E.: Product integration with the Clenshaw–Curtis points: implementation and error estimates. Numer. Math. 34, 387–401 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sugiura, H., Hasegawa, T.: A polynomial interpolation process at quasi-Chebyshev nodes with the FFT. Math. Comput. 276, 2169–2184 (2011)

    Article  MathSciNet  Google Scholar 

  14. Tolimieri, R., An, M., Lu, C.: Algorithms for Discrete Fourier Transform and Convolution, 2nd edn. Springer, New York (1997)

  15. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50, 67–87 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rivlin, T.J.: Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, 2nd edn. Wiley, New York (1990)

  17. Weideman, J.A.C., Trefethen, L.N.: The kink phenomenon in Fejér and Clenshaw–Curtis quadrature. Numer. Math. 107, 707–727 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Professor David Levin of Tel Aviv University for his helpful comments for improving English of the manuscript. We are grateful to Professor Sotirios E. Notaris of University of Athens for his detailed and constructive comments and for the suggestion which inspired us to prove that the weights \(v_j\) in Theorem 3 are all positive for any \(n\), not only for \(n\rightarrow \infty \). We also thank the reviewers for their valuable advices, which led to significant improvement of the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Sugiura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasegawa, T., Sugiura, H. Error estimate for a corrected Clenshaw–Curtis quadrature rule. Numer. Math. 130, 135–149 (2015). https://doi.org/10.1007/s00211-014-0660-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0660-y

Mathematics Subject Classification

Navigation