Skip to main content

Advertisement

Log in

Quasi-optimality of adaptive finite element methods for controlling local energy errors

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A rich theory demonstrating convergence and optimality of adaptive finite element methods (AFEM) has been developed in recent years. In this work we prove optimality of AFEM which are designed to control local energy errors in elliptic partial differential equations. Because errors propagate globally in FEM, controlling local errors requires controlling both local energy solution properties and global error contributions (pollution errors) which may be measured in a weaker norm such as the \(L_2\) norm. We define adaptive methods which control both of these error components and prove that they converge with the best possible rate over all possible refinements of the initial mesh. These results are valid for Poisson’s problem on convex polyhedral domains in arbitrary space dimension. Our theory establishes AFEM optimality for several adaptive marking strategies which rigorously control pollution effects. We also present numerical examples that illustrate our theory and confirm that local energy AFEM without pollution control can fail to yield optimal meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Babuška, I., Osborn, J.: Analysis of finite element methods for second order boundary value problems using mesh dependent norms. Numer. Math. 34, 41–62 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bank, R.E., Holst, M.: A new paradigm for parallel adaptive meshing algorithms. SIAM J. Sci. Comput. 22, 411–1443 (2000)

  3. Bank, R.E.. Holst, M.: A new paradigm for parallel adaptive meshing algorithms. SIAM Rev. 45, 291–323 (2003). [Reprinted from SIAM J. Sci. Comput. 22(4), 1411–1443 (2000). (MR1797889)]

  4. Bank, R.E., Ovall, J.S.: Dual functions for a parallel adaptive method. SIAM J. Sci. Comput. 29, 1511–1524 (2007)

  5. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Binev, P., Dahmen, W., DeVore, R., Petrushev, P.: Approximation classes for adaptive methods. Serdica Math. J. 28, 391–416 (2002). (Dedicated to the memory of Vassil Popov on the occasion of his 60th birthday)

  7. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

  8. Cascon, J., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dauge, M.: Elliptic boundary value problems on corner domains. In: Lecture Notes in Mathematics, vol. 1341. Springer, Berlin (1988)

  10. Demlow, A.: Local a posteriori estimates for pointwise gradient errors in finite element methods for elliptic problems. Math. Comput. 76, 19–42 (2007)

  11. Demlow, A.: Convergence of an adaptive finite element method for controlling local energy errors. SIAM J. Numer. Anal. 48, 470–497 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Demlow, A., Guzmán, J., Schatz, A.H.: Local energy estimates for the finite element method on sharply varying grids. Math. Comput. 80, 1–9 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Demlow, A., Leykekhman, D., Schatz, A.H., Wahlbin, L.B.: Best approximation property in the \({W}_\infty ^1\) norm on graded meshes. Math. Comput. 81, 743–764 (2012)

  14. Demlow, A., Stevenson, R.: Convergence and quasi-optimality of an adaptive finite element method for controlling \(L_2\) errors. Numer. Math. 117, 185–218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Diening, L., Kreuzer, C., Stevenson, R.: Instance optimality of the adaptive maximum strategy. Found. Comput. Math. (2015). doi:10.1007/s10208-014-9236-6

  16. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eriksson, K.: An adaptive finite element method with efficient maximum norm error control for elliptic problems. Math. Models Methods Appl. Sci. 4, 313–329 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Estep, D., Holst, M., Larson, M.: Generalized Green’s functions and the effective domain of influence. SIAM J. Sci. Comput. 26, 1314–1339 (2005)

  19. He, Y., Xu, J., Zhou, A., Li, J.: Local and parallel finite element algorithms for the Stokes problem. Numer. Math. 109, 415–434 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Holst, M.: Application of domain decomposition and partition of unity methods in physics and geometry. In: Domain Decomposition Methods in Science and Engineering, pp. 63–78. Natl. Auton. Univ. Mex., México (2003)

  21. Liao, X., Nochetto, R.H.: Local a posteriori error estimates and adaptive control of pollution effects. Numer. Methods Partial Differ. Equ. 19, 421–442 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maz’ya, V.G., Rossmann, J.: Elliptic equations in polyhedral domains. In: Mathematical Surveys and Monographs, vol. 162. American Mathematical Society, Providence (2010)

  23. Mekchay, K., Nochetto, R.H.: Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43, 1803–1827 (2005)

  24. Mommer, M.S., Stevenson, R.: A goal-oriented adaptive finite element method with convergence rates. SIAM J. Numer. Anal. 47, 861–886 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002). [Revised reprint of Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38(2), 466–488 (2000); MR1770058 (2001g:65157)]

  26. Morin, P., Siebert, K.G., Veeser, A.: A basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. Sci. 18, 707–737 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mu, M., Xu, J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nitsche, J.A., Schatz, A.H.: Interior estimates for Ritz–Galerkin methods. Math. Comput. 28, 937–958 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nochetto, R.H., Paolini, M., Verdi, C.: An adaptive finite element method for two-phase Stefan problems in two space dimensions. I. Stability and error estimates. Math. Comput. 57, 73–108 (1991). (S1–S11)

  30. Schmidt, A., Siebert, K.G.: Design of adaptive finite element software. In: Lecture Notes in Computational Science and Engineering, vol. 42. Springer, Berlin (2005). [The finite element toolbox ALBERTA, With 1 CD-ROM (Unix/Linux)]

  31. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stevenson, R.: An optimal adaptive finite element method. SIAM J. Numer. Anal. 42, 2188–2217 (2005)

  33. Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77, 227–241 (2008)

  35. Wihler, T.P.: Weighted \(L^2\) -norm a posteriori error estimation of FEM in polygons. Int. J. Numer. Anal. Model. 4, 100–115 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69, 881–909 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70, 17–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Demlow.

Additional information

This work was partially supported by the National Science Foundation under Grant DMS-1016094.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demlow, A. Quasi-optimality of adaptive finite element methods for controlling local energy errors. Numer. Math. 134, 27–60 (2016). https://doi.org/10.1007/s00211-015-0774-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0774-x

Mathematics Subject Classification

Navigation