Skip to main content
Log in

An adaptive least-squares FEM for the Stokes equations with optimal convergence rates

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper introduces the first adaptive least-squares finite element method (LS-FEM) for the Stokes equations with optimal convergence rates based on the newest vertex bisection with lowest-order Raviart-Thomas and conforming \(P_1\) discrete spaces for the divergence least-squares formulation in 2D. Although the least-squares functional is a reliable and efficient error estimator, the novel refinement indicator stems from an alternative explicit residual-based a posteriori error control with exact solve. Particular interest is on the treatment of the data approximation error which requires a separate marking strategy. The paper proves linear convergence in terms of the levels and optimal convergence rates in terms of the number of unknowns relative to the notion of a non-linear approximation class. It extends and generalizes the approach of Carstensen and Park (SIAM J. Numer. Anal. 53:43–62 2015) from the Poisson model problem to the Stokes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adler, J.H., Manteuffel, T.A., McCormick, S.F., Nolting, J.W., Ruge, J.W., Tang, L.: Efficiency based adaptive local refinement for first-order system least-squares formulations. SIAM J. Sci. Comput. 33(1), 1–24 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aurada, M., Feischl, M., Kemetmüller, J., Page, M., Praetorius, D.: Each \(H^{1/2}\)-stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in \({\mathbb{R}}^d\). ESAIM Math. Model. Numer. Anal. 47(4), 1207–1235 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartels, S., Carstensen, C., Dolzmann, G.: Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis. Numer. Math. 99(1), 1–24 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Becker, R., Mao, S.: Quasi-optimality of adaptive nonconforming finite element methods for the Stokes equations. SIAM J. Numer. Anal. 49(3), 970–991 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berndt, M., Manteuffel, T.A., McCormick, S.F.: Local error estimates and adaptive refinement for first-order system least squares (FOSLS). Electron. Trans. Numer. Anal. 6, 35–43 (1997, (electronic) [Special issue on multilevel methods (Copper Mountain, CO, 1997)]

  6. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Binev, P., DeVore, R.: Fast computation in adaptive tree approximation. Numer. Math. 97(2), 193–217 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bochev, P.B., Gunzburger, M.D.: Least-squares finite element methods, Applied mathematical sciences, vol. 166. Springer, New York (2009)

    MATH  Google Scholar 

  9. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications, Springer series in computational Mathematics, vol. 44. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  10. Braess, D.: Finite elements, 3rd edn. Theory, fast solvers, and applications in elasticity theory, Translated from the German by Larry L. Schumaker. MR 2322235 (2008b:65142). Cambridge University Press, Cambridge (2007)

  11. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, Texts in applied mathematics, vol. 15, 3rd edn. Springer, New York (2008)

  12. Cai, Z., Lee, B., Wang, P.: Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42(2), 843–859 (2004, electronic)

  13. Cai, Z., Tong, C., Vassilevski, P.S., Wang, C.: Mixed finite element methods for incompressible flow: stationary Stokes equations. Numer. Methods Partial Differ. Equ. 26(4), 957–978 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Cai, Z., Wang, Y.: A multigrid method for the pseudostress formulation of Stokes problems. SIAM J. Sci. Comput. 29(5), 2078–2095 (2007, electronic)

  15. Carstensen, C., Gallistl, D., Schedensack, M.: \(L^2\) best-approximation of the elastic stress in the Arnold-Winther FEM. IMA J. Numer. Anal. (2015, published online). doi:10.1093/imanum/drv051

  16. Carstensen, C.: An a posteriori error estimate for a first-kind integral equation. Math. Comput. 66(217), 139–155 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carstensen, C., Feischl, M., Page, M., Praetorius, D.: Axioms of adaptivity. Comput. Math. Appl. 67(6), 1195–1253 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Carstensen, C., Gallistl, D., Schedensack, M.: Quasi-optimal adaptive pseudostress approximation of the stokes equations. SIAM J. Numer. Anal. 51(3), 1715–1734 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Carstensen, C., Kim, D., Park, E.-J.: A priori and a posteriori pseudostress-velocity mixed finite element error analysis for the Stokes problem. SIAM J. Numer. Anal. 49(6), 2501–2523 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Carstensen, C., Park, E.-J.: Convergence and optimality of adaptive least squares finite element methods. SIAM J. Numer. Anal. 53(1), 43–62 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Carstensen, C., Peterseim, D., Rabus, H.: Optimal adaptive nonconforming FEM for the Stokes problem. Numer. Math. 123(2), 291–308 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Carstensen, C., Rabus, H.: An optimal adaptive mixed finite element method. Math. Comput. 80(274), 649–667 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Feischl, M., Page, M., Praetorius, D.: Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data. J. Comput. Appl. Math. 255, 481–501 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jun, H., Jinchao, X.: Convergence and optimality of the adaptive nonconforming linear element method for the Stokes problem. J. Sci. Comput. 55(1), 125–148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7(2), 245–269 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77(261), 227–241 (2008, electronic)

  29. Verfürth, R.: A posteriori error estimation techniques for finite element methods, Numerical mathematics and scientific computation. Oxford University Press, Oxford (2013)

    Book  MATH  Google Scholar 

  30. Zhong, L., Chen, L., Shu, S., Wittum, G., Jinchao, X.: Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations. Math. Comput. 81(278), 623–642 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by Deutsche Forschungsgemeinschaft (DFG) SPP 1748.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Carstensen.

Appendix: Proofs of Lemma 4.5–4.7

Appendix: Proofs of Lemma 4.54.7

Proof

(Proof of Lemma 4.5) For g replaced by \(\widehat{I} g \in S^{1}(\widehat{\mathcal {E}}({\Gamma });{\mathbb {R}}^2)\), Lemma 2.1 guarantees the existence of some \(\widehat{z}\in S^{1}(\widehat{\mathcal {T}};{\mathbb {R}}^2)\) with

$$\begin{aligned} \widehat{z}\vert _{\Gamma }=(\widehat{I} - I)g \quad \text {and}\quad \big \vert \!\big \vert \!\big \vert \widehat{z} \big \vert \!\big \vert \!\big \vert \lesssim {{\mathrm{osc}}}(\widehat{\Pi } g',\mathcal {E}({\Gamma })). \end{aligned}$$

The discrete equation (11) with respect to \(\widehat{\mathcal {T}}\) with test functions \({\varvec{\tau }}_{\mathrm{LS}}= \widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}}\in {\varvec{\Sigma }}(\widehat{\mathcal {T}})\) and \(v_{\mathrm{LS}}= \widehat{u}_{\mathrm{LS}}-u_{\mathrm{LS}}-\widehat{z}\in S^{1}_0(\widehat{\mathcal {T}};{\mathbb {R}}^2)\) imply that

$$\begin{aligned}&-\int _\Omega ({{\mathrm{dev}}}\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{{\mathrm{D}}}\widehat{u}_{\mathrm{LS}}) : ({{\mathrm{dev}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}})-{{\mathrm{D}}}(\widehat{u}_{\mathrm{LS}}-u_{\mathrm{LS}}-\widehat{z})) \mathrm{d} x\\&\quad =\int _\Omega (f_{\widehat{\mathcal {T}}} + {{\mathrm{div}}}\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}) \cdot {{\mathrm{div}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}})\mathrm{d} x\\&\quad =\int _\Omega (f_{\widehat{\mathcal {T}}}-f_\mathcal {T}) \cdot {{\mathrm{div}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}}) \mathrm{d} x\\&\qquad + \int _\Omega (f_\mathcal {T}+{{\mathrm{div}}}{\varvec{\sigma }}_{\mathrm{LS}}) \cdot {{\mathrm{div}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}}) \mathrm{d} x+\big \Vert {{\mathrm{div}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}})\big \Vert _{L^{2}({\Omega })}^2. \end{aligned}$$

The discrete equation (11) with respect to \({\varvec{\tau }}_{\mathrm{LS}}= {\varvec{\tau }}_{\mathrm{PS}}\) and the triangulation \(\mathcal {T}\) and (21) result in

$$\begin{aligned}&-\int _\Omega ({{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}-{{\mathrm{D}}}u_{\mathrm{LS}}) : {{\mathrm{dev}}}{\varvec{\tau }}_{\mathrm{PS}}\mathrm{d} x\\&\quad =\int _\Omega (f_\mathcal {T}+{{\mathrm{div}}}{\varvec{\sigma }}_{\mathrm{LS}}) \cdot {{\mathrm{div}}}{\varvec{\tau }}_{\mathrm{PS}}\mathrm{d} x=\int _\Omega (f_\mathcal {T}+{{\mathrm{div}}}{\varvec{\sigma }}_{\mathrm{LS}}) \cdot {{\mathrm{div}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}}) \mathrm{d} x. \end{aligned}$$

The combination of the preceding two displayed formulas proves

$$\begin{aligned}&\big \Vert {{\mathrm{div}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}})\big \Vert _{L^{2}({\Omega })}^2\\&\quad =-\int _\Omega (f_{\widehat{\mathcal {T}}}-f_\mathcal {T}) \cdot {{\mathrm{div}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}}) \mathrm{d} x+ \int _\Omega ({{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}- {{\mathrm{D}}}u_{\mathrm{LS}}) : {{\mathrm{dev}}}{\varvec{\tau }}_{\mathrm{PS}}\mathrm{d} x\\&\qquad - \int _\Omega ({{\mathrm{dev}}}\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{{\mathrm{D}}}\widehat{u}_{\mathrm{LS}}) : \big ({{\mathrm{dev}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}}) -{{\mathrm{D}}}(\widehat{u}_{\mathrm{LS}}-u_{\mathrm{LS}}-\widehat{z})\big ) \mathrm{d} x. \end{aligned}$$

This plus some elementary algebra leads to

$$\begin{aligned}&\big \Vert {{\mathrm{div}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}})\big \Vert _{L^{2}({\Omega })}^2 + \big \Vert {{\mathrm{dev}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}})-{{\mathrm{D}}}(\widehat{u}_{\mathrm{LS}}-u_{\mathrm{LS}})\big \Vert _{L^{2}({\Omega })}^2\nonumber \\&=-\int _\Omega (f_{\widehat{\mathcal {T}}}-f_\mathcal {T}) \cdot {{\mathrm{div}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}})\mathrm{d} x\nonumber \\&\quad -\int _\Omega ({{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}- {{\mathrm{D}}}u_{\mathrm{LS}}) : \big ({{\mathrm{dev}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}}-{\varvec{\tau }}_{\mathrm{PS}}) -{{\mathrm{D}}}(\widehat{u}_{\mathrm{LS}}-u_{\mathrm{LS}}-\widehat{z}) \big ) \mathrm{d} x\nonumber \\&\quad -\int _\Omega ({{\mathrm{dev}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}})-{{\mathrm{D}}}(\widehat{u}_{\mathrm{LS}}-u_{\mathrm{LS}})) : {{\mathrm{D}}}\widehat{z} \mathrm{d} x. \end{aligned}$$
(43)

The remaining analysis in this proof concerns the split

$$\begin{aligned} {{\mathrm{dev}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}}-{\varvec{\tau }}_{\mathrm{PS}}) = {{\mathrm{dev}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}}-\widehat{{\varvec{\tau }}}_{\mathrm{PS}}+\widehat{{\varvec{\tau }}}_{\mathrm{PS}}^*-{\varvec{\tau }}_{\mathrm{PS}}) + {{\mathrm{dev}}}(\widehat{{\varvec{\tau }}}_{\mathrm{PS}}-\widehat{{\varvec{\tau }}}_{\mathrm{PS}}^*). \end{aligned}$$

The Eq. (21) imply that the Raviart-Thomas function

$$\begin{aligned} \widehat{\varvec{\rho }} := \widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}}-\widehat{{\varvec{\tau }}}_{\mathrm{PS}}+\widehat{{\varvec{\tau }}}_{\mathrm{PS}}^*-{\varvec{\tau }}_{\mathrm{PS}}\end{aligned}$$
(44)

is divergence-free and so piecewise constant. The Helmholtz decomposition (14),

$$\begin{aligned} {{\mathrm{dev}}}\widehat{\varvec{\rho }} = {{\mathrm{{{\mathrm{D}}}_{{\mathrm{NC}}}}}}\widehat{\alpha } + {{\mathrm{dev}}}{{\mathrm{Curl}}}\widehat{\beta } \in P_0(\widehat{\mathcal {T}};{\mathbb {R}}^{2\times 2}_{{{\mathrm{dev}}}}), \end{aligned}$$

leads to some \(\widehat{\alpha }\in Z(\widehat{\mathcal {T}})\) and \(\widehat{\beta }\in X(\widehat{\mathcal {T}})\). The orthogonality and a piecewise integration by parts show

$$\begin{aligned} \big \vert \!\big \vert \!\big \vert \widehat{\alpha } \big \vert \!\big \vert \!\big \vert _{\mathrm{NC}}^2 =\int _\Omega {{\mathrm{dev}}}\widehat{\varvec{\rho }} : {{\mathrm{{{\mathrm{D}}}_{{\mathrm{NC}}}}}}\widehat{\alpha } \mathrm{d} x= \int _\Omega \widehat{\varvec{\rho }}:{{\mathrm{{{\mathrm{D}}}_{{\mathrm{NC}}}}}}\widehat{\alpha } \mathrm{d} x=\sum _{E\in \widehat{\mathcal {E}}(\Omega )} \int _E [\widehat{\varvec{\rho }}\nu _E \cdot \widehat{\alpha } ]_E \, \mathrm {d} s. \end{aligned}$$

Recall that the Raviart-Thomas function \(\widehat{\varvec{\rho }}\) is continuous in its normal components and that \(\widehat{\varvec{\rho }}\nu _E\) is constant along \(E\in \widehat{\mathcal {E}}(\Omega )\). Since the jump \([\widehat{\alpha } ]_E\) of E has integral mean zero along E,

$$\begin{aligned} \int _E [\widehat{\varvec{\rho }}\nu _E \cdot \widehat{\alpha } ]_E \, \mathrm {d} s=0. \end{aligned}$$

Hence, \(\widehat{\alpha }\equiv 0\) and the Helmholtz decomposition reduces to

$$\begin{aligned} {{\mathrm{dev}}}\widehat{\varvec{\rho }} = {{\mathrm{dev}}}{{\mathrm{Curl}}}\widehat{\beta } \end{aligned}$$
(45)

for the divergence-free test function \({{\mathrm{Curl}}}\widehat{\beta } \in RT_0(\widehat{\mathcal {T}};\mathbb {R}^{2 \times 2})\). One term in (43) reads

$$\begin{aligned}&-\int _\Omega ({{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}- {{\mathrm{D}}}u_{\mathrm{LS}}) : {{\mathrm{dev}}}(\widehat{{\varvec{\tau }}}_{\mathrm{PS}}-\widehat{{\varvec{\tau }}}_{\mathrm{PS}}^*)\mathrm{d} x\nonumber \\&\quad =\int _\Omega ({{\mathrm{dev}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}})-{{\mathrm{D}}}(\widehat{u}_{\mathrm{LS}}-u_{\mathrm{LS}})) : {{\mathrm{dev}}}(\widehat{{\varvec{\tau }}}_{\mathrm{PS}}-\widehat{{\varvec{\tau }}}_{\mathrm{PS}}^*) \mathrm{d} x\nonumber \\&\qquad -\int _\Omega ({{\mathrm{dev}}}\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{{\mathrm{D}}}\widehat{u}_{\mathrm{LS}}) : {{\mathrm{dev}}}(\widehat{{\varvec{\tau }}}_{\mathrm{PS}}-\widehat{{\varvec{\tau }}}_{\mathrm{PS}}^*)\mathrm{d} x. \end{aligned}$$
(46)

The discrete equation (11) with respect to the triangulation \(\widehat{\mathcal {T}}\), \({\varvec{\tau }}_{\mathrm{LS}}=\widehat{{\varvec{\tau }}}_{\mathrm{PS}}-\widehat{{\varvec{\tau }}}_{\mathrm{PS}}^*\), and \(v_{\mathrm{LS}}\equiv 0\), and the combination with (21) plus elementary algebra with the \(L^2\)-projection \(\Pi \) onto \(P_0(\mathcal {T};{\mathbb {R}}^{2\times 2})\) show

$$\begin{aligned}&-\int _\Omega ({{\mathrm{dev}}}\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{{\mathrm{D}}}\widehat{u}_{\mathrm{LS}}) : {{\mathrm{dev}}}(\widehat{{\varvec{\tau }}}_{\mathrm{PS}}-\widehat{{\varvec{\tau }}}_{\mathrm{PS}}^*) \mathrm{d} x\nonumber \\&\quad =\int _\Omega (f_{\widehat{\mathcal {T}}} + {{\mathrm{div}}}\widehat{{\varvec{\sigma }}}_{\mathrm{LS}})\cdot {{\mathrm{div}}}(\widehat{{\varvec{\tau }}}_{\mathrm{PS}}-\widehat{{\varvec{\tau }}}_{\mathrm{PS}}^*) \mathrm{d} x\nonumber \\&\quad =\int _\Omega (f_{\widehat{\mathcal {T}}} + {{\mathrm{div}}}\widehat{{\varvec{\sigma }}}_{\mathrm{LS}})\cdot \big ((1-\Pi ){{\mathrm{div}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}})\big ) \mathrm{d} x\nonumber \\&\quad =\int _\Omega (f_{\widehat{\mathcal {T}}}-f_\mathcal {T}) \cdot {{\mathrm{div}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}})\mathrm{d} x+ \big \Vert (1-\Pi ){{\mathrm{div}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}})\big \Vert _{L^{2}({\Omega })}^2. \end{aligned}$$
(47)

The combination of (43)–(47) concludes the proof. \(\square \)

Proof

(Proof of Lemma 4.6) Let \(v \in S^{1}_0(\mathcal {T};{\mathbb {R}}^2)\) be the Scott-Zhang quasi-interpolation of \(\widehat{v}:= \widehat{u}_{\mathrm{LS}}-u_{\mathrm{LS}}-\widehat{z} \in S^{1}_0(\widehat{\mathcal {T}};{\mathbb {R}}^2)\). For every \(z\in \mathcal {N}\) in the construction of the quasi-interpolation [26, Section 2], choose \(E\in \mathcal {E}(\omega _z)\) such that \(E\in \mathcal {E}\cap \widehat{\mathcal {E}}\), whenever possible. This ensures that the error function \(\widehat{w}:= \widehat{v}-v \in S^{1}_0(\widehat{\mathcal {T}};{\mathbb {R}}^2)\) of the quasi-interpolation vanishes on any \(T\in \mathcal {T}\cap \widehat{\mathcal {T}}\). The first-order approximation property [26, equation (4.3)] and the stability property [26, Theorem3.1] read

$$\begin{aligned} \big \vert T \big \vert ^{-1/2}\big \Vert \widehat{w}\big \Vert _{L^{2}({T})} + \big \Vert {{\mathrm{D}}}\widehat{w}\big \Vert _{L^{2}({T})} \lesssim \big \Vert {{\mathrm{D}}}\widehat{v}\big \Vert _{L^{2}({\Omega _T})} \end{aligned}$$
(48)

for the enlarged triangle patch \(\Omega _T := \bigcup _{z \in \mathcal {N}(T)} \omega _z\) on the triangulation \(\mathcal {T}\) of Fig. 3.

Fig. 3
figure 3

Enlarged triangle patch \(\Omega _T\)

Since \(v\in S^{1}_0(\mathcal {T};{\mathbb {R}}^2)\) is an admissible test function, (11) implies

$$\begin{aligned} \int _\Omega ({{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}- {{\mathrm{D}}}u_{\mathrm{LS}}) : {{\mathrm{D}}}v \mathrm{d} x= 0. \end{aligned}$$

This, the definition of \(\widehat{w}\), and a piecewise integration by parts result in

$$\begin{aligned}&\int _\Omega ({{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}-{{\mathrm{D}}}u_{\mathrm{LS}}):{{\mathrm{D}}}\widehat{v}\mathrm{d} x=\int _\Omega ({{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}-{{\mathrm{D}}}u_{\mathrm{LS}}):{{\mathrm{D}}}\widehat{w}\mathrm{d} x\nonumber \\&\quad =-\sum _{T\in \mathcal {T}{\setminus }\widehat{\mathcal {T}}} \bigg (\int _T \widehat{w} \cdot {{\mathrm{div}}}{{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}\mathrm{d} x\nonumber \\&\qquad +\sum _{E\in \mathcal {E}(T)\cap \mathcal {E}(\Omega )} \int _E \widehat{w}\cdot \big ([{{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}-{{\mathrm{D}}}u_{\mathrm{LS}} ]_{E}\,\nu _E\big )\, \mathrm {d} s\bigg ). \end{aligned}$$
(49)

Given any \(T\in \mathcal {T}{\setminus }\widehat{\mathcal {T}}\), a Cauchy-Schwarz inequality plus (48) prove

$$\begin{aligned} \int _T \widehat{w} \cdot {{\mathrm{div}}}{{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}\mathrm{d} x\le&~\big \vert T \big \vert ^{-1/2} \big \Vert \widehat{w}\big \Vert _{L^{2}({T})} \big \vert T \big \vert ^{1/2} \big \Vert {{\mathrm{div}}}{{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}\big \Vert _{L^{2}({T})}\\ \lesssim&~\big \Vert {{\mathrm{D}}}\widehat{v}\big \Vert _{L^{2}({\Omega _T})} \big \vert T \big \vert ^{1/2} \big \Vert {{\mathrm{div}}}{{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}\big \Vert _{L^{2}({T})}. \end{aligned}$$

Given any \(T\in \mathcal {T}{\setminus }\widehat{\mathcal {T}}\) with \(E\in \mathcal {E}(T)\), a combination of a Cauchy-Schwarz inequality, a trace inequality, and (48) result in

$$\begin{aligned}&\int _E \widehat{w} \cdot \big ([{{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}-{{\mathrm{D}}}u_{\mathrm{LS}} ]_{E}\,\nu _E\big ) \, \mathrm {d} s\\&\quad \le \big \vert T \big \vert ^{-1/4} \big \Vert \widehat{w}\big \Vert _{L^{2}({E})} \big \vert T \big \vert ^{1/4} \big \Vert [{{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}-{{\mathrm{D}}}u_{\mathrm{LS}} ]_{E}\,\nu _E\big \Vert _{L^{2}({E})}\\&\quad \lesssim \big (\big \vert T \big \vert ^{-1/2}\big \Vert \widehat{w}\big \Vert _{L^{2}({T})} + \big \Vert {{\mathrm{D}}}\widehat{w}\big \Vert _{L^{2}({T})}\big ) \big \vert T \big \vert ^{1/4} \big \Vert [{{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}-{{\mathrm{D}}}u_{\mathrm{LS}} ]_{E}\,\nu _E\big \Vert _{L^{2}({E})}\\&\quad \lesssim \big \Vert {{\mathrm{D}}}\widehat{v}\big \Vert _{L^{2}({\Omega _T})} \big \vert T \big \vert ^{1/4} \big \Vert [{{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}-{{\mathrm{D}}}u_{\mathrm{LS}} ]_{E}\,\nu _E\big \Vert _{L^{2}({E})}. \end{aligned}$$

The combination of (49) with the last two preceding estimates and a finite overlap of the patches \(\Omega _T\) from Fig. 3 conclude the proof. \(\square \)

Proof

(Proof of Lemma 4.7) Let \(\beta \in S^{1}(\mathcal {T};{\mathbb {R}}^2)\) be the Scott-Zhang quasi-interpolation of \(\widehat{\beta }\in S^{1}(\widehat{\mathcal {T}};{\mathbb {R}}^2)\). For every \(z\in \mathcal {N}\) in the design of the quasi-interpolation [26, Section 2], choose \(E\in \mathcal {E}(\omega _z)\) such that \(E\in \mathcal {E}\cap \widehat{\mathcal {E}}\), whenever possible, so that the error function \(\widehat{\gamma } := \widehat{\beta } - \beta \in S^{1}(\widehat{\mathcal {T}};{\mathbb {R}}^2)\) of the quasi-interpolation vanishes on any \(T\in \mathcal {T}\cap \widehat{\mathcal {T}}\). The first-order approximation property [26, equation (4.3)] and the stability property [26, Theorem 3.1] read, with the enlarged triangle patch \(\Omega _T\) of Fig. 3, as

$$\begin{aligned} \big \vert T \big \vert ^{-1/2} \big \Vert \widehat{\gamma }\big \Vert _{L^{2}({T})} +\big \Vert {{\mathrm{D}}}\widehat{\gamma }\big \Vert _{L^{2}({T})} \lesssim \big \Vert {{\mathrm{D}}}\widehat{\beta }\big \Vert _{L^{2}({\Omega _T})}. \end{aligned}$$
(50)

For \(x=(x_1,x_2)\in \bar{\Omega }\), define a modified quasi-interpolation \(\widetilde{\beta }\in S^{1}(\mathcal {T};{\mathbb {R}}^2)\) by

$$\begin{aligned} \widetilde{\beta }(x) := \beta (x) - c/2\,(-x_2,x_1)^\top \quad \text {with}\quad c := \int _\Omega {{\mathrm{tr}}}{{\mathrm{Curl}}}\beta \mathrm{d} x\Big /\big \vert \Omega \big \vert . \end{aligned}$$

This guarantees that \( {{\mathrm{Curl}}}\widetilde{\beta } = {{\mathrm{Curl}}}\beta - c/2\, I_{2\times 2}\in {\varvec{\Sigma }}(\mathcal {T}) \) is an admissible and divergence-free test function. Therefore, the discrete equation (11) proves

$$\begin{aligned}&\int _\Omega ({{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}-{{\mathrm{D}}}u_{\mathrm{LS}}) : {{\mathrm{dev}}}{{\mathrm{Curl}}}\beta \mathrm{d} x\\&\quad = \int _\Omega ({{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}-{{\mathrm{D}}}u_{\mathrm{LS}}) : {{\mathrm{dev}}}{{\mathrm{Curl}}}\widetilde{\beta } \mathrm{d} x= 0. \end{aligned}$$

This plus elementary algebra on the deviatoric part and a piecewise integration by parts imply

$$\begin{aligned}&\int _\Omega ({{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}- {{\mathrm{D}}}u_{\mathrm{LS}}) : {{\mathrm{dev}}}{{\mathrm{Curl}}}\widehat{\beta } \mathrm{d} x\\&\quad =\int _\Omega ({{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}- {{\mathrm{D}}}u_{\mathrm{LS}}) : {{\mathrm{dev}}}{{\mathrm{Curl}}}\widehat{\gamma } \mathrm{d} x=\int _\Omega {{\mathrm{dev}}}({\varvec{\sigma }}_{\mathrm{LS}}- {{\mathrm{D}}}u_{\mathrm{LS}}) : {{\mathrm{Curl}}}\widehat{\gamma } \mathrm{d} x\nonumber \\&\quad =-\sum _{T\in \mathcal {T}{\setminus }\widehat{\mathcal {T}}} \bigg (\int _T \widehat{\gamma } \cdot {{\mathrm{curl}}}{{\mathrm{dev}}}({\varvec{\sigma }}_{\mathrm{LS}}-{{\mathrm{D}}}u_{\mathrm{LS}})\mathrm{d} x\nonumber \\&\qquad +\sum _{E\in \mathcal {E}(T)} \int _E \widehat{\gamma } \cdot \big ([{{\mathrm{dev}}}({\varvec{\sigma }}_{\mathrm{LS}}-{{\mathrm{D}}}u_{\mathrm{LS}}) ]_{E} \,\tau _E\big ) \, \mathrm {d} s\bigg ).\nonumber \end{aligned}$$
(51)

Given any \(T\in \mathcal {T}{\setminus }\widehat{\mathcal {T}}\), a Cauchy-Schwarz inequality plus (50) prove

$$\begin{aligned} \int _T \widehat{\gamma } \cdot {{\mathrm{curl}}}{{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}\mathrm{d} x\lesssim \big \Vert {{\mathrm{D}}}\widehat{\beta }\big \Vert _{L^{2}({\Omega _T})} \big \vert T \big \vert ^{1/2}\big \Vert {{\mathrm{curl}}}{{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}\big \Vert _{L^{2}({T})}. \end{aligned}$$

Given any \(T\in \mathcal {T}{\setminus }\widehat{\mathcal {T}}\) with \(E\in \mathcal {E}(T)\), a combination of a Cauchy-Schwarz inequality, a trace inequality, and (50) imply

$$\begin{aligned}&\int _E \widehat{\gamma } \cdot ([{{\mathrm{dev}}}({\varvec{\sigma }}_{\mathrm{LS}}-{{\mathrm{D}}}u_{\mathrm{LS}}) ]_{E}\,\tau _E)\, \mathrm {d} s\\&\quad \le \big \vert T \big \vert ^{-1/4} \big \Vert \widehat{\gamma }\big \Vert _{L^{2}({E})} \big \vert T \big \vert ^{1/4} \big \Vert [{{\mathrm{dev}}}({\varvec{\sigma }}_{\mathrm{LS}}-{{\mathrm{D}}}u_{\mathrm{LS}}) ]_{E} \,\tau _E\big \Vert _{L^{2}({E})}\\&\quad \lesssim \big \Vert {{\mathrm{D}}}\widehat{\beta }\big \Vert _{L^{2}({\Omega _T})} \big \vert T \big \vert ^{1/4} \big \Vert [{{\mathrm{dev}}}({\varvec{\sigma }}_{\mathrm{LS}}-{{\mathrm{D}}}u_{\mathrm{LS}}) ]_{E} \,\tau _E\big \Vert _{L^{2}({E})}. \end{aligned}$$

The combination of (51) with the last two preceding estimates and a finite overlap of the patches \(\Omega _T\) from Fig. 3 prove

$$\begin{aligned}&\int _\Omega ({{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}-{{\mathrm{D}}}u_{\mathrm{LS}}):{{\mathrm{dev}}}{{\mathrm{Curl}}}\widehat{\beta }\mathrm{d} x\lesssim \big \vert \!\big \vert \!\big \vert \widehat{\beta } \big \vert \!\big \vert \!\big \vert \bigg (\sum _{T\in \mathcal {T}{\setminus }\widehat{\mathcal {T}}}\Big ( \big \vert T \big \vert \,\big \Vert {{\mathrm{curl}}}{{\mathrm{dev}}}{\varvec{\sigma }}_{\mathrm{LS}}\big \Vert _{L^{2}({T})}^2\nonumber \\&\qquad \qquad +\sum _{E\in \mathcal {E}(T)} \big \vert T \big \vert ^{1/2}\big \Vert [{{\mathrm{dev}}}({\varvec{\sigma }}_{\mathrm{LS}}-{{\mathrm{D}}}u_{\mathrm{LS}}) ]_{E}\, \tau _{E}\big \Vert _{L^{2}({E})}^2 \Big )\bigg )^{1/2}. \end{aligned}$$
(52)

The subsequent stability property can be found in [13, Lemma 3.4] in different notation

$$\begin{aligned} \big \Vert {\varvec{\tau }}_{\mathrm{PS}}\big \Vert _{L^{2}({\Omega })} \lesssim \big \Vert f\big \Vert _{L^{2}({\Omega })}+\big \Vert g\big \Vert _{H^{1/2}({\Gamma })}. \end{aligned}$$

The stability of PS-FEM applied to \(\widehat{{\varvec{\tau }}}_{\mathrm{PS}}-\widehat{{\varvec{\tau }}}_{\mathrm{PS}}^*\) and \({\varvec{\tau }}_{\mathrm{PS}}\) yields

$$\begin{aligned} \big \Vert \widehat{{\varvec{\tau }}}_{\mathrm{PS}}-\widehat{{\varvec{\tau }}}_{\mathrm{PS}}^*\big \Vert _{L^{2}({\Omega })}&\lesssim \big \Vert (1-\Pi ){{\mathrm{div}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}})\big \Vert _{L^{2}({\Omega })} \quad \text {and}\\ \big \Vert {\varvec{\tau }}_{\mathrm{PS}}\big \Vert _{L^{2}({\Omega })}&\lesssim \big \Vert \Pi {{\mathrm{div}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}})\big \Vert _{L^{2}({\Omega })}.\nonumber \end{aligned}$$
(53)

Since \(\widehat{\beta }\in X(\widehat{\mathcal {T}})\), \({{\mathrm{Curl}}}\widehat{\beta } \in \varvec{\Sigma } (\widehat{\mathcal {T}})\). Hence, the tr-dev-div lemma (15), Eq. (45), definition (44), a triangle inequality, and (53) imply

$$\begin{aligned} \big \vert \!\big \vert \!\big \vert \widehat{\beta } \big \vert \!\big \vert \!\big \vert&=\big \Vert {{\mathrm{Curl}}}\widehat{\beta }\big \Vert _{L^{2}({\Omega })} \lesssim \big \Vert {{\mathrm{dev}}}{{\mathrm{Curl}}}\widehat{\beta }\big \Vert _{L^{2}({\Omega })} =\big \Vert {{\mathrm{dev}}}\widehat{\varvec{\rho }}\big \Vert _{L^{2}({\Omega })} \le \big \Vert \widehat{\varvec{\rho }}\big \Vert _{L^{2}({\Omega })}\\&\le \big \Vert \widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}}\big \Vert _{L^{2}({\Omega })} +\big \Vert \widehat{{\varvec{\tau }}}_{\mathrm{PS}}-\widehat{{\varvec{\tau }}}_{\mathrm{PS}}^*\big \Vert _{L^{2}({\Omega })} +\big \Vert {\varvec{\tau }}_{\mathrm{PS}}\big \Vert _{L^{2}({\Omega })}\\&\lesssim \big \Vert \widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}}\big \Vert _{L^{2}({\Omega })} +\big \Vert (1-\Pi ){{\mathrm{div}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}})\big \Vert _{L^{2}({\Omega })}\\&\qquad +\big \Vert \Pi {{\mathrm{div}}}(\widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}})\big \Vert _{L^{2}({\Omega })}\\&\lesssim \big \Vert \widehat{{\varvec{\sigma }}}_{\mathrm{LS}}-{\varvec{\sigma }}_{\mathrm{LS}}\big \Vert _{H({{\mathrm{div}}},\Omega )}. \end{aligned}$$

This and (52) conclude the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bringmann, P., Carstensen, C. An adaptive least-squares FEM for the Stokes equations with optimal convergence rates. Numer. Math. 135, 459–492 (2017). https://doi.org/10.1007/s00211-016-0806-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0806-1

Mathematics Subject Classification

Navigation