Skip to main content
Log in

Analysis of an interior penalty discontinuous Galerkin scheme for two phase flow in porous media with dynamic capillary effects

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present an interior penalty discontinuous Galerkin scheme for a two-phase porous media flow model that incorporates dynamic effects in the capillary pressure. The approximation of the mass-conservation laws is performed in their original formulation, without introducing a global pressure. We prove the existence of a solution to the emerging fully discrete systems and the convergence of the scheme. Error-estimates are obtained for sufficiently smooth data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces. Pure and Applied Mathematics. Elsevier Science, Amsterdam (2003)

    Google Scholar 

  2. Babuska, I., Suri, M.: The \(h-p\) version of the finite element method with quasiuniform meshes. ESAIM Math. Model. Numer. Anal. Modlisation Math. Anal. Numrique 21(2), 199–238 (1987)

  3. Bastian, P.: A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure. Comput. Geosci. 18(5), 779–796 (2014). doi:10.1007/s10596-014-9426-y

    Article  MathSciNet  Google Scholar 

  4. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Fahlke, J., Gräser, C., Klöfkorn, R., Nolte, M., Ohlberger, M., Sander, O.: DUNE Web page (2011). http://www.dune-project.org

  5. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework. Comput. 82(2), 103–119 (2008). doi:10.1007/s00607-008-0003-x

    MathSciNet  MATH  Google Scholar 

  6. Bastian, P., Heimann, F., Marnach, S.: Generic implementation of finite element methods in the distributed and unified numerics environment (DUNE). Kybernetika 46(2), 294–315 (2010)

  7. Bastian, P., Riviere, B.: Superconvergence and h(div) projection for discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 42(10), 1043–1057 (2003). doi:10.1002/fld.562

    Article  MathSciNet  MATH  Google Scholar 

  8. Bear, J.: Dynamics of fluids in porous media. Dover Publications (2013). ISBN:9780486131801

  9. Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Hydrology Papers, Colorado State University 3 (1964)

  10. Burdine, N.: Relative permeability calculations from pore size distribution data. J. Pet. Technol. 5(3), 71–78 (1953). doi:10.2118/225-G

    Article  Google Scholar 

  11. Cao, X., Nemadjieu, S., Pop, I.S.: A multipoint flux approximation finite volume scheme for two phase porous media flow with dynamic capillarity. CASA-Report 15–33, Eindhoven University of Technology (2015)

  12. Cao, X., Pop, I.S.: Two-phase porous media flows with dynamic capillary effects and hysteresis: uniqueness of weak solutions. Comput. Math. Appl. 69(7), 688–695 (2015). doi:10.1016/j.camwa.2015.02.009

  13. Cao, X., Pop, I.S.: Degenerate two-phase porous media flow model with dynamic capillarity. J. Differ. Equ. 260(3), 2418–2456 (2016). doi:10.1016/j.jde.2015.10.008

    Article  MathSciNet  MATH  Google Scholar 

  14. Chavent, G., Jaffre, J.: Mathematical models and finite elements for reservoir simulation single phase, multiphase and multicomponent flows through porous media. In: Studies in mathematics and its applications. Elsevier, North Holland, Amsterdam (1986)

  15. Demmel, J., Gilbert, J., Li, X.: Superlu users’ guide. Technical Report LBNL-44289, Lawrence Berkeley National Laboratory (1999). http://crd-legacy.lbl.gov/~xiaoye/SuperLU/. Last update: September 2007

  16. Deuflhard, P.: Newton methods for nonlinear problems: affine invariance and adaptive algorithms. In: Springer series in computational mathematics, vol. 35. Springer, Berlin, Heidelberg, New York (2011)

  17. Di Pietro, D., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comput. 79(271), 1303–1330 (2010)

  18. Di Pietro, D., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  19. DiCarlo, D.A.: Experimental measurements of saturation overshoot on infiltration. Water Resour. Res. 40(4) 1944–7973 (2004). doi:10.1029/2003WR002670

  20. Diersch, H.J., Clausnitzer, V., Myrnyy, V., Rosati, R., Schmidt, M., Beruda, H., Ehrnsperger, B., Virgilio, R.: Modeling unsaturated flow in absorbent swelling porous media: part 1. Theory. Transp. Porous Media 83(3), 437–464 (2010). doi:10.1007/s11242-009-9454-6

    Article  MathSciNet  Google Scholar 

  21. van Duijn, C., Fan, Y., Peletier, L., Pop, I.S.: Travelling wave solutions for degenerate pseudo-parabolic equations modelling two-phase flow in porous media. Nonlinear Anal. Real World Appl. 14(3), 1361–1383 (2013). doi:10.1016/j.nonrwa.2012.10.002

    Article  MathSciNet  MATH  Google Scholar 

  22. van Duijn, C., Cao, X., Pop, I.S.: Two-phase flow in porous media: dynamic capillarity and heterogeneous media. Transp. Porous Media 1–26 (2015). doi:10.1007/s11242-015-0547-0

  23. Durlofsky, L.: A triangle based mixed finite element–finite volume technique for modeling two phase flow through porous media. J. Comput. Phys. 105(2), 252–266 (1993). doi:10.1006/jcph.1993.1072

    Article  MATH  Google Scholar 

  24. Epshteyn, Y., Riviere, B.: Analysis of discontinuous Galerkin methods for incompressible two-phase flow. J. Comput. Appl. Math. 225(2), 487–509 (2009). doi:10.1016/j.cam.2008.08.026

  25. Ern, A., Mozolevski, I., Schuh, L.: Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures. Comput. Methods Appl. Mech. Eng. 199(2324), 1491–1501 (2010). doi:10.1016/j.cma.2009.12.014

  26. Evans, L.C.: Partial differential equations. In: Graduate studies in mathematics. American Mathematical Society (1998)

  27. Eymard, R., Herbin, R., Michel, A.: Mathematical study of a petroleum-engineering scheme. Math. Model. Numer. Anal. 37, 2003 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fan, Y., Pop, I.S.: A class of pseudo-parabolic equations: existence, uniqueness of weak solutions, and error estimates for the Euler-implicit discretization. Math. Methods Appl. Sci. 34, 2329–2339 (2011). doi:10.1002/mma.1537

    MathSciNet  MATH  Google Scholar 

  29. Girault, V., Raviart, P.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986)

  30. Hassanizadeh, S., Beliaev, A.: A theoretical model of hysteresis and dynamic effects in thecapillary relation for two-phase flow in porous media. Transp. Porous Media 43(3), 487–510 (2001). doi:10.1023/A:1010736108256

    Article  MathSciNet  Google Scholar 

  31. Hassanizadeh, S., Gray, W.: Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29(10), 3389–3405 (1993). doi:10.1029/93WR01495

    Article  Google Scholar 

  32. Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Environmental Engineering. Springer, Berlin (1997)

  33. Helmig, R., Weiss, A., Wohlmuth, B.: Dynamic capillary effects in heterogeneous porous media. Comput. Geosci. 11(3), 261–274 (2007). doi:10.1007/s10596-007-9050-1

    Article  MathSciNet  MATH  Google Scholar 

  34. Kissling, F., Rohde, C.: The computation of nonclassical shock waves with a heterogeneous multiscale method. Netw. Heterog. Media 5(3), 661–674 (2010). doi:10.3934/nhm.2010.5.661

    Article  MathSciNet  MATH  Google Scholar 

  35. Koch, J., Rätz, A., Schweizer, B.: Two-phase flow equations with a dynamic capillary pressure. Eur. J. Appl. Math. 24, 49–75 (2013). doi:10.1017/S0956792512000307

  36. List, F., Radu, F.A.: A study on iterative methods for solving Richards equation. Comput. Geosci. 20(2), 341–353 (2016). doi:10.1007/s10596-016-9566-3

  37. Mikelic, A.: A global existence result for the equations describing unsaturated flow in porous media with dynamic capillary pressure. J. Differ. Equ. 248(6), 1561–1577 (2010). doi:10.1016/j.jde.2009.11.022

  38. Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12, 513–522 (1976). doi:10.1029/WR012i003p00513

    Article  Google Scholar 

  39. Nordbotten, J.M., Celia, M.A.: Geological storage of CO2: modeling approaches for large-scale simulation. In: Geological storage of CO\(_2\). Wiley, Hoboken, New Jersey (2012)

  40. Radu, F., Pop, I.S.: Mixed finite element discretization and Newton iteration for a reactive contaminant transport model with nonequilibrium sorption: convergence analysis and error estimates. Comput. Geosci. 15(3), 431–450 (2011)

    Article  MATH  Google Scholar 

  41. Radu, F.A., Nordbotten, J.M., Pop, I.S., Kumar, K.: A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media. J. Comput. Appl. Math. 289(0), 134–141 (2015). doi:10.1016/j.cam.2015.02.051. Sixth International Conference on Advanced Computational Methods in Engineering (ACOMEN 2014)

  42. Rätz, A., Schweizer, B.: Hysteresis models and gravity fingering in porous media. ZAMM J. Appl. Math. Mech. Z. für Angew. Math. und Mech. 94(7–8), 645–654 (2014)

  43. Riviere, B., Wheeler, M., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39(3), 902–931 (2001). doi:10.1137/S003614290037174X

    Article  MathSciNet  MATH  Google Scholar 

  44. Sun, S., Wheeler, M.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43(1), 195–219 (2005). doi:10.1137/S003614290241708X

    Article  MathSciNet  MATH  Google Scholar 

  45. Temam, R.: Navier–Stokes equations: theory and numerical analysis, vol. 343. American Mathematical Soc. Chelsea Publishing (2001) (Reprint of the 1984 edition)

  46. Van Genuchten, M.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Article  Google Scholar 

  47. Warburton, T., Hesthaven, J.: On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192(25), 2765–2773 (2003). doi:10.1016/S0045-7825(03)00294-9

Download references

Acknowledgments

Stefan Karpinski wants to thank Prof. B.I. Wohlmuth for the introduction to this interesting topic and the guidance through his first years in academia. He would also like to express his gratitude to his employers, Dr. Roman Rojko and Dr. Stefan Zaprianov from ESPRiT Engineering GmbH for their mentorship and support. Special thanks also to Prof. F.A. Radu (Bergen) for the fruitful and productive discussions during his visit to the University of Bergen. This stay was supported by the International Research Training Group NUPUS, funded by the German Research Foundation DFG (GRK 1398), the Netherlands Organization for Scientific Research NWO (DN 81-754) and by the Research Council of Norway (215627). Iuliu Sorin Pop acknowledges the support from the Akademia grant of Statoil and from the Shell-NWO/FOM CSER programme (project 14CSER016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Karpinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpinski, S., Pop, I.S. Analysis of an interior penalty discontinuous Galerkin scheme for two phase flow in porous media with dynamic capillary effects. Numer. Math. 136, 249–286 (2017). https://doi.org/10.1007/s00211-016-0839-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0839-5

Navigation