Skip to main content
Log in

Numerical analysis of quasilinear parabolic equations under low regularity assumptions

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we carry out the numerical analysis of a class of quasilinear parabolic equations, where the diffusion coefficient depends on the solution of the partial differential equation. The goal is to prove error estimates for the fully discrete equation using discontinuous Galerkin discretization in time DG(0) combined with piecewise linear finite elements in space. This analysis is performed under minimal regularity assumptions on the data. In particular, we omit any assumption regarding existence of a second derivative in time of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrivis, G., Crouzeix, M., Makridakis, Ch.: Implicit–explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82, 521–541 (1999)

    Article  MathSciNet  Google Scholar 

  2. Akrivis, G., Li, B., Lubich, C.: Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations. Math. Comp. 86(306), 1527–1552 (2017)

    Article  MathSciNet  Google Scholar 

  3. Akrivis, G., Makridakis, C.: Galerkin time-stepping methods for nonlinear parabolic equations. ESAIM: M2AN 38, 261–289 (2004)

    Article  MathSciNet  Google Scholar 

  4. Amann, H.: Linear and Quasilinear Parabolic Problems, vol. 1. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  5. Amann, H.: Compact embeddings of vector-valued Sobolev and Besov spaces. Glas. Mat. 35(55), 161–177 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Amann, H.: Linear parabolic problems involving measures. Rev. R. Acad. Cienc. Serie A. Mat. 95(1), 85–119 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Bramble, J.H., King, J.T.: A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries. Math. Comp. 63(207), 1–17 (1994)

    Article  MathSciNet  Google Scholar 

  8. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  9. Casas, E., Chrysafinos, K.: Analysis and optimal control of some quasilinear parabolic equations. Math. Control Relat. Fields 8(3&4), 607–623 (2018)

    Article  MathSciNet  Google Scholar 

  10. Casas, E., Dhamo, V.: Error estimates for the numerical approximation of a quasilinear Neumann problem under minimal regularity of the data. Numer. Math. 117, 115–145 (2011)

    Article  MathSciNet  Google Scholar 

  11. Casas, E., Sokolowski, J.: Approximation of boundary control problems on curved domains. SIAM J. Control Optim. 48(6), 3746–3780 (2010)

    Article  MathSciNet  Google Scholar 

  12. Casas, E., Tröltzsch, F.: Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations. ESAIM:COCV 17, 771–800 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Chrysafinos, K., Walkington, N.J.: Error estimates for the discontinuous Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 44(1), 349–366 (2006)

    Article  MathSciNet  Google Scholar 

  14. Dendy Jr., J.E.: Galerkin’s method for some highly nonlinear problems. SIAM J. Numer. Anal. 14(2), 327–347 (1977)

    Article  MathSciNet  Google Scholar 

  15. Dobrowolski, M.: L\(^{\infty }\)-convergence of linear finite element approximation to quasilinear initial boundary value problems. RAIRO Anal. Numer. 12, 247–266 (1978)

    Article  MathSciNet  Google Scholar 

  16. Dobrowolski, M.: L\(^{\infty }\)-convergence of linear finite element approximation to nonlinear initial boundary value problems. SIAM J. Numer. Anal. 17, 663–674 (1980)

    Article  MathSciNet  Google Scholar 

  17. Douglas Jr., J., Dupont, T.: Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 7, 575–626 (1970)

    Article  MathSciNet  Google Scholar 

  18. Douglas Jr., J., Dupont, T.: A Galerkin method for a nonlinear Dirichlet problem. Math. Comp. 29(131), 689–696 (1975)

    Article  MathSciNet  Google Scholar 

  19. Douglas Jr., J., Dupont, T., Wahlbin, L.: The stability in \({L}^q\) of the \({L}^2\) projection into finite element function spaces. Numer. Math. 23, 193–197 (1975)

    Article  Google Scholar 

  20. Leykekham, D., Vexler, B.: Discrete maximal parabolic regularity for Galerkin finite element methods for non-autonomous parabolic problems. SIAM J. Numer. Anal. 56(4), 2178–2202 (2018)

    Article  MathSciNet  Google Scholar 

  21. Liu, L., Křížek, M., Neittaanmäki, P.: Higher order finite element approximation of a quasilinear elliptic boundary value problem of a non-monotone type. Appl. Math. 41(6), 467–478 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Luskin, M.: A Galerkin method for nonlinear parabolic parabolic equations with nonlinear boundary conditions. SIAM J. Numer. Anal. 16, 284–299 (1979)

    Article  MathSciNet  Google Scholar 

  23. Prüss, J., Schnaubelt, R.: Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time. J. Math. Anal. Appl. 256, 405–430 (2001)

    Article  MathSciNet  Google Scholar 

  24. Rachford Jr., H.H.: Two-level discrete-time Galerkin approximations for second order nonlinear parabolic partial differential equations. SIAM J. Numer. Anal. 10, 1010–1026 (1973)

    Article  MathSciNet  Google Scholar 

  25. Wheeler, M.: A priori L\(^2\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)

    Article  MathSciNet  Google Scholar 

  26. Zlamal, M.: Finite element methods for nonlinear parabolic equations. RAIRO Anal. Numer. 11, 93–107 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Chrysafinos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was partially supported by Spanish Ministerio de Economía, Industria y Competitividad under research projects MTM2014-57531-P and MTM2017-83185-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casas, E., Chrysafinos, K. Numerical analysis of quasilinear parabolic equations under low regularity assumptions. Numer. Math. 143, 749–780 (2019). https://doi.org/10.1007/s00211-019-01071-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01071-5

Mathematics Subject Classification

Navigation