Skip to main content
Log in

Complexity-Theoretic Hierarchies Induced by Fragments of Gödel’s T

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We introduce two hierarchies of unknown ordinal height. The hierarchies are induced by natural fragments of a calculus based on finite types and Gödel’s T, and all the classes in the hierarchies are uniformly defined without referring to explicit bounds. Deterministic complexity classes like logspace, p, pspace, linspace and exp are captured by the hierarchies. Typical subrecursive classes are also captured, e.g. the small relational Grzegorczyk classes ℰ 0* , ℰ 1* and ℰ 2* .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avigad, J., Feferman, S.: Gödel’s functional interpretation. In: Buss, S. (ed.) Handbook of Proof Theory, pp. 337–405. Elsevier, Amsterdam (1998)

    Chapter  Google Scholar 

  2. Bel’tyukov, A.: A machine description and the hierarchy of initial Grzegorczyk classes. J. Sov. Math. (1982); Zap. Naucn. Sem. Leninigrad. Otdel. Mat. Inst. Steklov. (LOMI) 88, 30–46 (1979)

  3. Clote, P.: Computation models and function algebra. In: Griffor, E. (ed.) Handbook of Computability Theory, pp. 589–681. Elsevier, Amsterdam (1999)

    Chapter  Google Scholar 

  4. Ehrenfeucht, A.: Polynomial functions with exponentiation are well ordered. Algebra Univers. 3, 261–262 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  5. Esbelin, M.A., More, M.: Rudimentary relations and primitive recursion: a toolbox. Theor. Comput. Sci. 193, 129–148 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gandy, R.: Some relations between classes of low computational complexity. Bull. Lond. Math. Soc. 127–134 (1984)

  7. Goerdt, A., Seidl, H.: Characterizing complexity classes by higher type primitive recursive definitions, part II. In: Aspects and Prospects of Theoretical Computer Science, Smolenice, 1990. Lecture Notes in Comput. Sci., vol. 464, pp. 148–158. Springer, New York (1990)

    Google Scholar 

  8. Goerdt, A.: Characterizing complexity classes by higher type primitive recursive definitions. Theor. Comput. Sci. 100(1), 45–66 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grzegorczyk, A.: Some classes of recursive functions. Rozprawy Matematyczne No. IV. Warszawa (1953)

  10. Jones, N.: The expressive power of higher-order types or, life without CONS. J. Funct. Program. 11, 55–94 (2001)

    Article  MATH  Google Scholar 

  11. Kristiansen, L.: Neat function algebraic characterizations of logspace and linspace. Comput. Complex. 14(1), 72–88 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kristiansen, L.: Complexity-theoretic hierarchies. In: CiE 2006: Logical Approaches to Computational Barriers. Lecture Notes in Comput. Sci., vol. 3988, pp. 279–288. Springer, New York (2006)

    Chapter  Google Scholar 

  13. Kristiansen, L., Barra, G.: The small Grzegorczyk classes and the typed λ-calculus. In: CiE 2005: New Computational Paradigms. Lecture Notes in Comput. Sci., vol. 3526, pp. 252–262. Springer, New York (2005)

    Google Scholar 

  14. Kristiansen, L., Voda, P.: Complexity classes and fragments of C. Inf. Process. Lett. 88, 213–218 (2003)

    Article  MathSciNet  Google Scholar 

  15. Kristiansen, L., Voda, P.: The surprising power of restricted programs and Gödel’s functionals. In: Baaz, M., Makowsky, J. (eds.) CSL 2003: Computer Science Logic. Lecture Notes in Comput. Sci., vol. 2803, pp. 345–358. Springer, New York (2003)

    Google Scholar 

  16. Kristiansen, L., Voda, P.: Programming languages capturing complexity classes. Nord. J. Comput. 12, 1–27 (2005), Special issue for NWPT’04

    MathSciNet  Google Scholar 

  17. Kristiansen, L., Voda, P.: The trade-off theorem and fragments of Gödel’s t. In: TAMC’06: Theory and Applications of Models of Computation. Lecture Notes in Comput. Sci., vol. 3959, pp. 654–674. Springer, New York (2006)

    Chapter  Google Scholar 

  18. Kutylowski, M.: Small Grzegorczyk classes. J. Lond. Math. Soc. 36(2), 193–210 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Levitz, H.: An ordinal bound for the set of polynomial functions with exponentiation. Algebra Univers. 8, 233–244 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  20. Odifreddi, P.: Classical Recursion Theory. Vol. II. North-Holland, Amsterdam (1999)

    MATH  Google Scholar 

  21. Paris, J., Wilkie, A.: Counting problems in bounded arithmetic. In: Methods in Mathematical Logic, Proceedings, Caracas, 1983. Lecture Notes in Math., vol. 1130, pp. 317–340. Springer, New York (1985)

    Chapter  Google Scholar 

  22. Ritchie, R.W.: Classes of predictably computable functions. Trans. Am. Math. Soc. 106, 139–173 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rose, H.: Subrecursion. Functions and Hierarchies. Clarendon, Oxford (1984)

    MATH  Google Scholar 

  24. Schwichtenberg, H.: Classifying recursive functions. In: Griffor, E. (ed.) Handbook of Computability Theory, pp. 533–586. Elsevier, Amsterdam (1996)

    Google Scholar 

  25. Skolem, T.: An ordered set of arithmetic functions representing the least ε-number. Det K. Nor. Vidensk. Selsk. Forh. 29(12), 54–59 (1956)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Kristiansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristiansen, L. Complexity-Theoretic Hierarchies Induced by Fragments of Gödel’s T . Theory Comput Syst 43, 516–541 (2008). https://doi.org/10.1007/s00224-007-9021-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-007-9021-x

Keywords

Navigation