Skip to main content
Log in

Computability of Countable Subshifts in One Dimension

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We investigate the computability of countable subshifts in one dimension, and their members. Subshifts of Cantor–Bendixson rank two contain only eventually periodic elements. Any rank two subshift in 2 is decidable. Subshifts of rank three may contain members of arbitrary Turing degree. In contrast, effectively closed (\(\Pi^{0}_{1}\)) subshifts of rank three contain only computable elements, but \(\Pi^{0}_{1}\) subshifts of rank four may contain members of arbitrary \(\Delta^{0}_{2}\) degree. There is no subshift of rank ω+1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bournez, O., Cosnard, M.: On the computational power of dynamical systems and hybrid systems. Theor. Comput. Sci. 168, 417–459 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Braverman, M., Yampolsky, M.: Non-computable Julia sets. J. Am. Math. Soc. 19, 551–578 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cenzer, D.: Effective dynamics. In: Crossley, J., Remmel, J., Shore, R., Sweedler, M. (eds.) Logical Methods in Honor of Anil Nerode’s Sixtieth Birthday, pp. 162–177. Birkhäuser, Basel (1993)

    Google Scholar 

  4. Cenzer, D.: \(\Pi^{0}_{1}\) classes in computability theory. In: Griffor, E. (ed.) Handbook of Computability Theory. Elsevier Studies in Logic, vol. 140, pp. 37–85 (1999)

    Chapter  Google Scholar 

  5. Cenzer, D., Clote, P., Smith, R., Soare, R., Wainer, S.: Members of countable \(\Pi^{0}_{1}\) classes. Ann. Pure Appl. Log. 31, 145–163 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cenzer, D., Dashti, A., King, J.L.F.: Computable symbolic dynamics. Math. Log. Q. 54, 524–533 (2008)

    Article  MathSciNet  Google Scholar 

  7. Cenzer, D., Dashti, A., Toska, F., Wyman, S.: Computability of countable shifts. In: Ferreira, F., et al. (eds.) Programs, Proofs and Processes, CIE 2010. Springer Lecture Notes in Computer Science, vol. 6158, pp. 88–97 (2010)

    Chapter  Google Scholar 

  8. Cenzer, D., Downey, R., Jockusch, C.G., Shore, R.: Countable thin \(\Pi^{0}_{1}\) classes. Ann. Pure Appl. Log. 59, 79–139 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cenzer, D., Hinman, P.G.: Degrees of difficulty of generalized r.e. separating classes. Arch. Math. Log. 45, 629–647 (2008)

    Article  MathSciNet  Google Scholar 

  10. Cenzer, D., Remmel, J.B.: \(\Pi^{0}_{1}\) classes. In: Ersov, Y., Goncharov, S., Marek, V., Nerode, A., Remmel, J. (eds.) Handbook of Recursive Mathematics, Vol. 2: Recursive Algebra, Analysis and Combinatorics. Elsevier Studies in Logic and the Foundations of Mathematics, vol. 139, pp. 623–821 (1998)

    Chapter  Google Scholar 

  11. Cenzer, D., Smith, R.: The ranked points of a \(\Pi^{0}_{1}\) set. J. Symb. Log. 54, 975–991 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Delvenne, J.-C., Kurka, P., Blondel, V.: Decidability and universality in symbolic dynamical systems. Fundam. Inform. 74, 463–490 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Hochman, M.: On the dynamics and recursive properties of multidimensional symbolic systems. Invent. Math. 176, 131–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ko, K.: On the computability of fractal dimensions and Julia sets. Ann. Pure Appl. Log. 93, 195–216 (1998)

    Article  MATH  Google Scholar 

  15. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Math. and its Appl., vol. 90. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  16. Medvedev, Y.: Degrees of difficulty of the mass problem. Dokl. Akad. Nauk SSSR 104, 501–504 (1955)

    MathSciNet  MATH  Google Scholar 

  17. Miller, J.: Two notes on subshifts. Proc. Am. Math. Soc. (to appear)

  18. Rettinger, R., Weihrauch, K.: The computational complexity of some Julia sets. In: Goemans, M.X. (ed.) Proc. 35th ACM Symposium on Theory of Computing, San Diego, June 2003, pp. 177–185. ACM, New York (2003)

    Google Scholar 

  19. Simpson, S.G.: Mass problems and randomness. Bull. Symb. Log. 11, 1–27 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Simpson, S.G.: Subsystems of Second Order Arithmetic, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  21. Simpson, S.G.: Medvedev degrees of two-dimensional subshifts of finite type. Ergod. Theory Dyn. Syst. (to appear)

  22. Sorbi, A.: The Medvedev lattice of degrees of difficulty. In: Cooper, S.B., et al. (eds.) Computability, Enumerability, Unsolvability: Directions in Recursion Theory. London Mathematical Society Lecture Notes, vol. 224, pp. 289–312. Cambridge University Press, Cambridge (1996). ISBN 0-521-55736-4

    Chapter  Google Scholar 

  23. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  24. Jeandal, E., Vanier, P.: Turing degrees of multidimensional SFTs. arXiv:1108.1012v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Cenzer.

Additional information

This research was partially supported by NSF grants DMS 0532644 and 0554841 and 652372.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cenzer, D., Dashti, A., Toska, F. et al. Computability of Countable Subshifts in One Dimension. Theory Comput Syst 51, 352–371 (2012). https://doi.org/10.1007/s00224-011-9358-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-011-9358-z

Keywords

Navigation