Skip to main content
Log in

Nearly-Linear Work Parallel SDD Solvers, Low-Diameter Decomposition, and Low-Stretch Subgraphs

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We present the design and analysis of a nearly-linear work parallel algorithm for solving symmetric diagonally dominant (SDD) linear systems. On input an SDD n-by-n matrix A with m nonzero entries and a vector b, our algorithm computes a vector \(\tilde{x}\) such that \(\|\tilde{x} - A^{+}b\|_{A} \leq\varepsilon\cdot\|{A^{+}b}\|_{A}\) in \(O(m\log^{O(1)}{n}\log {\frac{1}{\varepsilon}})\) work and \(O(m^{1/3+\theta}\log\frac{1}{\varepsilon})\) depth for any θ>0, where A + denotes the Moore-Penrose pseudoinverse of A.

The algorithm relies on a parallel algorithm for generating low-stretch spanning trees or spanning subgraphs. To this end, we first develop a parallel decomposition algorithm that in O(mlogO(1) n) work and polylogarithmic depth, partitions a graph with n nodes and m edges into components with polylogarithmic diameter such that only a small fraction of the original edges are between the components. This can be used to generate low-stretch spanning trees with average stretch O(n α) in O(mlogO(1) n) work and O(n α) depth for any α>0. Alternatively, it can be used to generate spanning subgraphs with polylogarithmic average stretch in O(mlogO(1) n) work and polylogarithmic depth. We apply this subgraph construction to derive a parallel linear solver.

By using this solver in known applications, our results imply improved parallel randomized algorithms for several problems, including single-source shortest paths, maximum flow, minimum-cost flow, and approximate maximum flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 4.1
Algorithm 4.2
Algorithm 5.1
Fig. 1

Similar content being viewed by others

Notes

  1. The Spielman-Teng solver and all subsequent improvements are randomized algorithms. Consequently, all algorithms relying on the solvers are also randomized. For simplicity, we omit standard complexity factors related to the probability of error.

  2. I.e. linear up to polylogarithmic factors.

  3. As an aside, this construction of low-stretch ultrasparse graphs shows how to obtain the nearly-linear time sequential linear system solver from [29] without the more intricate, polylog average stretch constructions [1, 10].

References

  1. Abraham, I., Bartal, Y., Neiman, O.: Nearly tight low stretch spanning trees. In: FOCS, pp. 781–790 (2008)

    Google Scholar 

  2. Alon, N., Karp, R.M., Peleg, D., West, D.: A graph-theoretic game and its application to the k-server problem. SIAM J. Comput. 24(1), 78–100 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Awerbuch, B.: Complexity of network synchronization. J. Assoc. Comput. Mach. 32(4), 804–823 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  5. Christiano, P., Kelner, J.A., Madry, A., Spielman, D.A., Teng, S.H.: Electrical flows, Laplacian systems, and faster approximation of maximum flow in undirected graphs. In: STOC, pp. 273–282 (2011)

    Google Scholar 

  6. Chvátal, V.: The tail of the hypergeometric distribution. Discrete Math. 25(3), 285–287 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t. In: Proceedings of the 1993 IEEE 34th Annual Foundations of Computer Science, pp. 648–658. IEEE Computer Society, Washington (1993). doi:10.1109/SFCS.1993.366822. http://portal.acm.org/citation.cfm?id=1398517.1398961

    Chapter  Google Scholar 

  8. Cohen, E.: Polylog-time and near-linear work approximation scheme for undirected shortest paths. J. ACM 47(1), 132–166 (2000)

    MATH  MathSciNet  Google Scholar 

  9. Daitch, S.I., Spielman, D.A.: Faster approximate lossy generalized flow via interior point algorithms. CoRR (2008). arXiv:0803.0988

  10. Elkin, M., Emek, Y., Spielman, D.A., Teng, S.H.: Lower-stretch spanning trees. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 494–503. ACM Press, New York (2005). doi:10.1145/1060590.1060665

    Google Scholar 

  11. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  12. Gremban, K.: Combinatorial preconditioners for sparse, symmetric, diagonally dominant linear systems. Ph.D. thesis, Carnegie Mellon University, Pittsburgh (1996). CMU CS Tech Report CMU-CS-96-123

  13. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963). doi:10.2307/2282952

    Article  MATH  MathSciNet  Google Scholar 

  14. JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley, Reading (1992)

    MATH  Google Scholar 

  15. Kelner, J.A., Levin, A.: Spectral sparsification in the semi-streaming setting. In: Schwentick, T., Dürr, C. (eds.) 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011). Leibniz International Proceedings in Informatics (LIPIcs), vol. 9, pp. 440–451. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2011)

    Google Scholar 

  16. Klein, P.N., Subramanian, S.: A randomized parallel algorithm for single-source shortest paths. J. Algorithms 25(2), 205–220 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Koutis, I.: Combinatorial and algebraic algorithms for optimal multilevel algorithms. Ph.D. thesis, Carnegie Mellon University, Pittsburgh (2007). CMU CS Tech Report CMU-CS-07-131

  18. Koutis, I., Miller, G.L.: A linear work, O(n 1/6) time, parallel algorithm for solving planar Laplacians. In: SODA, pp. 1002–1011 (2007)

    Google Scholar 

  19. Koutis, I., Miller, G.L., Peng, R.: Approaching optimality for solving SDD linear systems. In: FOCS, pp. 235–244 (2010)

    Google Scholar 

  20. Koutis, I., Miller, G.L., Peng, R.: A nearly mlogn time solver for SDD linear systems. In: FOCS, pp. 590–598 (2011). doi:10.1109/FOCS.2011.85

    Google Scholar 

  21. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Array, Trees, Hypercubes. Morgan Kaufmann Publishers, San Francisco (1992)

    Google Scholar 

  22. Miller, G.L., Reif, J.H.: Parallel tree contraction part 1: fundamentals. In: Micali, S. (ed.) Randomness and Computation, vol. 5, pp. 47–72. JAI Press, Greenwich (1989)

    Google Scholar 

  23. Pan, V.Y., Reif, J.H.: Fast and efficient parallel solution of sparse linear systems. SIAM J. Comput. 22(6), 1227–1250 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Renegar, J.: A Mathematical View of Interior-Point Methods in Convex Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2001)

    Book  MATH  Google Scholar 

  25. Schieber, B., Vishkin, U.: On finding lowest common ancestors: simplification and parallelization. SIAM J. Comput. 17(6), 1253–1262 (1988). doi:10.1137/0217079

    Article  MATH  MathSciNet  Google Scholar 

  26. Skala, M.: Hypergeometric tail inequalities: ending the insanity (2009). http://ansuz.sooke.bc.ca/professional/hypergeometric.pdf

  27. Spielman, D.A.: Algorithms, graph theory, and linear equations in Laplacian matrices. In: Proceedings of the International Congress of Mathematicians (2010)

    Google Scholar 

  28. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. In: STOC, pp. 563–568 (2008)

    Google Scholar 

  29. Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems. CoRR (2006). arXiv:cs/0607105

  30. Teng, S.H.: The Laplacian paradigm: emerging algorithms for massive graphs. In: Theory and Applications of Models of Computation, pp. 2–14 (2010)

    Chapter  Google Scholar 

  31. Ullman, J.D., Yannakakis, M.: High-probability parallel transitive-closure algorithms. SIAM J. Comput. 20(1), 100–125 (1991). doi:10.1137/0220006

    Article  MATH  MathSciNet  Google Scholar 

  32. Ye, Y.: Interior Point Algorithms: Theory and Analysis. Wiley, New York (1997). http://www.worldcat.org/oclc/36746523

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Science Foundation under grant numbers CCF-1018463, CCF-1018188, and CCF-1016799, CCF-1149048, by an Alfred P. Sloan Fellowship, and by generous gifts from IBM, Intel, and Microsoft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blelloch, G.E., Gupta, A., Koutis, I. et al. Nearly-Linear Work Parallel SDD Solvers, Low-Diameter Decomposition, and Low-Stretch Subgraphs. Theory Comput Syst 55, 521–554 (2014). https://doi.org/10.1007/s00224-013-9444-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-013-9444-5

Keywords

Navigation