Skip to main content
Log in

Enhancing the Computation of Distributed Shortest Paths on Power-law Networks in Dynamic Scenarios

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

The problem of finding and keeping updated shortest paths in distributed networks is considered crucial in today’s practical applications. In the recent past, there has been a renewed interest in devising new efficient distance-vector algorithms as an attractive alternative to link-state solutions for large-scale Ethernet networks, in which scalability and reliability are key issues or the nodes can have limited storage capabilities. In this paper, we present Distributed Computation Pruning (DCP), a new technique, which can be combined with every distance-vector routing algorithm based on shortest paths, allowing to reduce the total number of messages sent by that algorithm and its space occupancy per node. To check its effectiveness, we combined the new technique with DUAL (Diffuse Update ALgorithm), one of the most popular distance-vector algorithm in the literature, which is part of CISCO’s widely used EIGRP protocol, and with the recently introduced LFR (Loop Free Routing) which has been shown to have good performances on real networks. We give experimental evidence that these combinations lead to a significant gain both in terms of number of messages sent and of memory requirements per node.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Albert, R., Barabási, A.-L.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Attiya, H., Welch, J.: Distributed Computing. Wiley, New York (2004)

    Book  Google Scholar 

  3. Awerbuch, B., Bar-Noy, A., Gopal, M.: Approximate distributed bellman-ford algorithms. IEEE Trans. Commun. 42(8), 2515–2517 (1994)

    Article  Google Scholar 

  4. Bertsekas, D., Gallager, R.: Data Networks. Prentice Hall International, Upper Saddle River (1992)

    MATH  Google Scholar 

  5. Bu, T., Towsleym, D.: On distinguishing between internet power law topology generators. In: Proceedings 21st Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM2002) IEEE , pp 37–48 (2002)

  6. Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D.: Partially dynamic efficient algorithms for distributed shortest paths. Theor. Comput. Sci. 411, 1013–1037 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Maurizio, V.: Engineering a new algorithm for distributed shortest paths on dynamic networks. Algorithmica 66(1), 51–86 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cicerone, S., Stefano, G.D., Frigioni, D., Nanni, U.: A fully dynamic algorithm for distributed shortest paths. Theor. Comput. Sci. 297(1-3), 83–102 (2003)

    Article  MATH  Google Scholar 

  9. D’Angelo, G., D’Emidio, M., Frigioni, D.: Pruning the computation of distributed shortest paths in power-law networks. Informatica 37(3), 253–265 (2013)

    MathSciNet  Google Scholar 

  10. D’Angelo, G., D’Emidio, M., Frigioni, D.: A loop-free shortest-path routing algorithm for dynamic networks. Theor. Comput. Sci. 516, 1–19 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. D’Angelo, G., D’Emidio, M., Frigioni, D., Romano, D.: Enhancing the computation of distributed shortest paths on real dynamic networks. In: Proceedings 1st Mediterranean Conference on Algorithms (MEDALG2012), volume 7659 of Lecture Notes in Computer Science, pp 148–158 (2012)

  12. Elmeleegy, K., Cox, A.L., Ng, T.S.E.: On count-to-infinity induced forwarding loops in ethernet networks. In: Proceedings 25th IEEE Conference on Computer Communications (INFOCOM2006), pp 1–13 (2006)

  13. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic algorithms for maintaining shortest paths trees. J. Algorithm. 34(2), 251–281 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garcia-Lunes-Aceves, J.J.: Loop-free routing using diffusing computations. IEEE/ACM Trans. Netw. 1(1), 130–141 (1993)

    Article  Google Scholar 

  15. Humblet, P.A.: Another adaptive distributed shortest path algorithm. IEEE Trans. Commun. 39(6), 995–1002 (1991)

    Article  MATH  Google Scholar 

  16. Hyun, Y., Huffaker, B., Andersen, D., Aben, E., Shannon, C., Luckie, M., Claffy, K.: The CAIDA IPv4 routed/24 topology dataset. http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml.

  17. Italiano, G.F.: Distributed algorithms for updating shortest paths. In: International Workshop on Distributed Algorithms, volume 579 of Lecture Notes in Computer Science, pp 200–211 (1991)

  18. McQuillan, J.: Adaptive Routing Algorithms for Distributed Computer Networks. Technical Report BBN Report 2831. Cambridge, MA (1974)

    Google Scholar 

  19. Moy, J.T.: OSPF: Anatomy of an Internet routing protocol. Addison-Wesley, Reading (1998)

    Google Scholar 

  20. Myers, A., Ng, E., Zhang, H.: Rethinking the service model: Scaling ethernet to a million nodes. In: Proceedings 3rd Workshop on Hot Topics in Networks (ACM HotNets). ACM Press (2004)

  21. Narváez, P., Siu, K.-Y., Tzeng, H.-Y.: New dynamic algorithms for shortest path tree computation. IEEE/ACM Trans. Netw. 8(6), 734–746 (2000)

    Article  Google Scholar 

  22. OMNeT ++: Discrete event simulation environment. http://www.omnetpp.org.

  23. Orda, A., Rom, R.: Distributed shortest-path and minimum-delay protocols in networks with time-dependent edge-length. Distrib. Comput. 10, 49–62 (1996)

    Article  MathSciNet  Google Scholar 

  24. Pahlavan, K., Krishnamurthy, P.: Networking Fundamentals: Wide, Local and Personal Area Communications. Wiley, New York (2009)

    Book  Google Scholar 

  25. Ramarao, K.V.S., Venkatesan, S.: On finding and updating shortest paths distributively. J. Algorithm. 13, 235–257 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ray, S., Guérin, R., Kwong, K.-W., Sofia, R.: Always acyclic distributed path computation. IEEE/ACM Trans. Netw. 18(1), 307–319 (2010)

    Article  Google Scholar 

  27. Rosen, E.C.: The updating protocol of arpanet’s new routing algorithm. Comput. Netw. 4, 11–19 (1980)

    Google Scholar 

  28. Wu, J., Dai, F., Lin, X., Cao, J., Jia, W.: An extended fault-tolerant link-state routing protocol in the internet. IEEE Trans. Comp. 52(10), 1298–1311 (2003)

    Article  Google Scholar 

  29. Yao, N., Gao, E., Qin, Y., Zhang, H.: Rd: Reducing message overhead in DUAL. In: Proceedings 1st International Conference on Network Infrastructure and Digital Content (IC-NIDC2009), IEEE Press, pp 270–274 (2009)

  30. Zhao, C., Liu, Y., Liu, K.: A more efficient diffusing update algorithm for loop-free routing. In: Proceedings 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom2009), IEEE Press, pp 1–4 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia D’Emidio.

Additional information

Research partially supported by the Italian Ministry of University and Research under the Research Grants: 2010N5K7EB PRIN 2010 “ARS TechnoMedia” (Algoritmica per le Reti Sociali Tecno-mediate), and 2012C4E3KT PRIN 2012 “AMANDA” (Algorithmics for MAssive and Networked DAta). Parts of this work have been published in a preliminary form in [11].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Angelo, G., D’Emidio, M., Frigioni, D. et al. Enhancing the Computation of Distributed Shortest Paths on Power-law Networks in Dynamic Scenarios. Theory Comput Syst 57, 444–477 (2015). https://doi.org/10.1007/s00224-015-9608-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-015-9608-6

Keywords

Navigation