Skip to main content
Log in

Coherence of Reducibilities with Randomness Notions

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Loosely speaking, when A is “more random” than B and B is “random”, then A should be random. The theory of algorithmic randomness has some formulations of “random” sets and “more random” sets. In this paper, we study which pairs (R, r) of randomness notions R and reducibilities r have the follwing property: if A is r-reducible to B and A is R-random, then B should be R-random. The answer depends on the notions R and r. The implications hold for most pairs, but not for some. We also give characterizations of n-randomness via complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barmpalias, G.: Algorithmic randomness and measures of complexity. Bull. Symb. Log. 19(3), 318–350 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauwens, B.: Prefix and plain Kolmogorov complexity characterizations of 2-randomness: simple proofs. Arch. Math. Log. 54(5), 615–629 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bienvenu, L.: Game-Theoretic Approaches to Randomness: Unpredictability and Stochasticity. PhD thesis, Université de Provence - Aix-Marseille I (2009)

  4. Bienvenu, L., Downey, R.: Kolmogorov Complexity and Solovay Functions. In: STACS, volume 3 of LIPIcs, pp 147–158 (2009)

  5. Bienvenu, L., Downey, R., Nies, A., Merkle, W.: Solovay functions and their applications in algorithmic randomness. J. Comput. Syst. Sci. 81(8), 1575–1591 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bienvenu, L., Merkle, W.: Reconciling data compression and Kolmogorov complexity. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) Automata, Languages and Programming, volume 4596 of Lecture Notes in Computer Science, pp 643–654. Springer, Berlin (2007)

    Google Scholar 

  7. Bienvenu, L., Muchnik, A., Shen, A., Vereshchagin, N.: Limit complexities revisited. Theor. Comput. Syst. 47(3), 720–736 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bienvenu, L., Muchnik, A., Shen, A., Vereshchagin, N.: Limit complexities revisited [once more]. ArXiv e-prints (2012)

  9. Conidis, C.J.: Effectively approximating measurable sets by open sets. Theor. Comput. Sci. 438, 36–46 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Downey, R., Griffiths, E.: Schnorr randomness. J. Symb. Log. 69(2), 533–554 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Downey, R., Hirschfeldt, D.R.: Algorithmic randomness and complexity. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  12. Downey, R.G., Griffiths, E.J., Reid, S.: On Kurtz randomness. Theor. Comput. Sci. 321, 249–270 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Franklin, J.N.Y.: Schnorr triviality and genericity. J. Symb. Log. 75(1), 191–207 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Franklin, J.N.Y., Stephan, F.: Schnorr trivial sets and truth-table reducibility. J. Symb. Log. 75(2), 501–521 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Graduate texts in computer science, third edition. Springer, New York (2009)

    Google Scholar 

  16. Miller, J.S.: Every 2-random real is Kolmogorov random. J. Symb. Log. 69(3), 907–913 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miller, J.S.: The K-degrees, low for K-degrees, and weakly low for K sets. Notre Dame J. Formal Log. 50, 381–391 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miller, J.S., Yu, L.: On initial segment complexity and degrees of randomness. Trans. Am. Math. Soc. 360, 3193–3210 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Miyabe, K.: Schnorr triviality and its equivalent notions. Theor. Comput. Syst. 56(3), 465–486 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Miyabe, K.: Reducibilities relating to schnorr randomness. Theory Comput. Syst. 58(3), 441–462 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nies, A.: Computability and Randomness. Oxford University Press, USA (2009)

    Book  MATH  Google Scholar 

  22. Nies, A., Stephan, F., Terwijn, S.: Randomness, relativization and Turing degrees. J. Symb. Log. 70, 515–535 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. van Lambalgen, M.: Random Sequences. PhD Thesis University of Amsterdam (1987)

Download references

Acknowledgments

This work was supported by JSPS KAKENHI, Grant-in-Aid for Young Scientists (B), Grant Number 26870143. The author appreciates Frank Stephan for a useful comment to initial work of this paper at CCR2014 at Singapore, and André Nies for some comments to a later manuscript. The author also appreciates the reviewers for careful reading and some advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenshi Miyabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyabe, K. Coherence of Reducibilities with Randomness Notions. Theory Comput Syst 62, 1599–1619 (2018). https://doi.org/10.1007/s00224-017-9752-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-017-9752-2

Keywords

Navigation