Skip to main content
Log in

Liouville, Computable, Borel Normal and Martin-Löf Random Numbers

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We survey the relations between four classes of real numbers: Liouville numbers, computable reals, Borel absolutely-normal numbers and Martin-Löf random reals. Expansions of reals play an important role in our analysis. The paper refers to the original material and does not repeat proofs. A characterisation of Liouville numbers in terms of their expansions will be proved and a connection between the asymptotic complexity of the expansion of a real and its irrationality exponent will be used to show that Martin-Löf random reals have irrationality exponent 2. Finally we discuss the following open problem: are there computable, Borel absolutely-normal, non-Liouville numbers?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. 1 We denote by \(\bar {S}\) the complement of the set S.

References

  1. Abbott, A.: Inapplicability of certain correlations in Borel-normal sequences, manuscript, 2 January 2014, 3 pages

  2. Bailey, D.H., Crandall, R.E.: Random generators and normal numbers. Experiment. Math. 11(4), 527–546 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Becher, V., Bugeaud, Y., Slaman, T.A.: The irrationality exponents of computable numbers. Proceedings of the American Mathematical Society 144, 1509–1521 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Becher, V., Heiber, P., Slaman, T.A.: A polynomial-time algorithm for computing absolutely normal numbers. Information and Computation 232, 1–9 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Becher, V., Heiber, P., Slaman, T.A.: A computable absolutely normal Liouville number. Math. Comput. 86, 2939–2952 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borel, É. : Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico di Palermo 27, 247–271 (1909)

    Article  MATH  Google Scholar 

  7. Borwein, J., van der Poorten, A., Shallit, J., Zudilin, W.: Neverending Fractions. an Introduction to Continued Fractions. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  8. Bugeaud, Y.: Nombres de Liouville et nombres normaux. C. R. Acad. Sci. Paris, Ser. I 335, 117–120 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calude, C.S.: Information and Randomness—An Algorithmic Perspective, 2nd ed. Springer, Berlin (2002)

    MATH  Google Scholar 

  10. Calude, C., Chiţescu, I.: Random sequences: some topological and measure-theoretical properties. An. Univ. Bucureşti Mat.-Inf. 2, 27–32 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Calude, C., Jürgensen, H., Rozenberg, G.: Randomness as an invariant for number representations. In: Maurer, H., Karhumäki, J. (eds.) Results and Trends in Theoretical Computer Science, Lecture Notes in Comput. Sci., Vol. 812, pp. 44–66. Springer-Verlag, Berlin (1994)

    Chapter  Google Scholar 

  12. Calude, C.S., Marcus, S., Staiger, L.: A topological characterization of random sequences, Inform. Process. Lett. 88, 245–250 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Calude, C.S., Staiger, L., Terwijn, S.A.: On partial randomness. Ann. Appl. Pur. Log. 138, 20–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Champernowne, D.G.: The construction of decimals normal in the scale of ten. J. Lond. Math. Soc. 8, 254–260 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  15. Coons, M.: Addendum to: On the rational approximation of the sum of the reciprocals of the Fermat numbers. Ramanujan J. 37(1), 109–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. de Bruijn, N.: A combinatorial problem. Proc. Kon. Nederl. Akad. Wetensch. 49, 758–764 (1946)

    MATH  Google Scholar 

  17. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  18. Edgar, G.: Measure, Topology, and Fractal Geometry. Springer, New York (2008)

    Book  MATH  Google Scholar 

  19. Falconer, K.: Fractal Geometry. Wiley, New York (1990)

    MATH  Google Scholar 

  20. Hall, M. Jr.: Combinatorial Theory. Blaisdell, Waltham (1967)

    MATH  Google Scholar 

  21. Hertling, P., Weihrauch, K.: Random elements in effective topological spaces with measure. Information and Computation 181(1), 32–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jarník, V.: Diophantische Approximationen und Hausdorffsches Maß. Rec. Math. Moscou 36, 371–382 (1929)

    MATH  Google Scholar 

  23. Jürgensen, H., Thierrin, G.: Some structural properties of ú-languages 13th Nat. School with Internat. Participation “Applications of Mathematics in Technology”, pp. 56–63, Sofia (1988)

  24. Kaufman, R.: On the theorem of Jarník and Besicovitch. Acta Arithmetica 39, 265–267 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Knight, M.J.: An “Oceans of Zeros” proof that a certain Non-Liouville number is transcendental. American Mathematical Monthly 98(10), 947–949 (1991)

    MathSciNet  MATH  Google Scholar 

  26. Kolmogorov, A.N.: Logical basis for information theory and probability theory. IEEE Trans. Inform. Theory 14, 662–664 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liouville, J.: Mémoires et Communications des Membres et des Correspondants de l’Académie. C. R. Acad. Sci. 18, 883–885 (1844)

    Google Scholar 

  28. Maillet, E.: Sur les nombres quasi-rationnels et les fractions arithmétiques ordinaires ou continues quasi-périodiques. C. R. Acad. Sci. Paris 138, 410–411 (1904)

    MATH  Google Scholar 

  29. Martin, G.: Absolutely abnormal numbers. American Mathematical Monthly 108(8), 746–754 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Martin-Löf, P.: The definition of random sequences. Inf. Control. 9, 602–619 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mielke, J.: Refined bounds on Kolmogorov complexity for ω-languages. Electr. Notes Theor. Comput. Sci. 221, 181–189 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nandakumar, S., Vangapelli, S.K.: Normality and finite-state dimension of Liouville numbers. Theory of Computing Systems 58, 392–402 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Oxtoby, J.C.: Measure and Category, 2nd ed. Springer-Verlag, Berlin (1980)

    Book  MATH  Google Scholar 

  34. Ya, B.: Ryabko. Noiseless coding of combinatorial sources, Hausdorff dimension and Kolmogorov complexity. Problemy Peredachi Informatsii 22(3), 16–26 (1986)

    MathSciNet  Google Scholar 

  35. Schneider, T.: Einführung in Die Transzendenten Zahlen. Springer-Verlag, Berlin (1957)

    Book  MATH  Google Scholar 

  36. Staiger, L.: Kolmogorov complexity and Hausdorff dimension. Inf. Comput. 103, 159–194 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Staiger, L.: The Kolmogorov complexity of real numbers, Theoret. Comput. Sci. 284, 455–466 (2002)

    MathSciNet  MATH  Google Scholar 

  38. van Lint, J.H., Wilson, R.M.: A Course in Combinatorics. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to H. Jürgensen for introducing them (long time ago) to Liouville numbers. Calude acknowledges the stimulating discussions on randomness and Liouville numbers with J. Borwein and S. Marcus (sadly, both passed away in 2016) as well as the University of Auckland financial support of his sabbatical leave in 2013. I. Tomescu’s computation suggested that no Martin-Löf random real satisfies the second property in Corollary 2.3; A. Abbott proved that Borel normal sequences have that property [1]. We thank them both. Finally we thank G. Tee and the referees for comments that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian S. Calude.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calude, C.S., Staiger, L. Liouville, Computable, Borel Normal and Martin-Löf Random Numbers. Theory Comput Syst 62, 1573–1585 (2018). https://doi.org/10.1007/s00224-017-9767-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-017-9767-8

Keywords

Navigation