Skip to main content
Log in

Partial Covering Arrays: Algorithms and Asymptotics

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

A covering array CA(N;t, k, v) is an N × k array with entries in {1,2,…, v}, for which every N × t subarray contains each t-tuple of {1,2,…, v}t among its rows. Covering arrays find application in interaction testing, including software and hardware testing, advanced materials development, and biological systems. A central question is to determine or bound CAN(t, k, v), the minimum number N of rows of a CA(N;t, k, v). The well known bound CAN(t, k, v) = O((t − 1)v t log k) is not too far from being asymptotically optimal. Sensible relaxations of the covering requirement arise when (1) the set {1,2,…, v}t need only be contained among the rows of at least \((1-\epsilon )\binom {k}{t}\) of the N × t subarrays and (2) the rows of every N × t subarray need only contain a (large) subset of {1,2,…, v}t. In this paper, using probabilistic methods, significant improvements on the covering array upper bound are established for both relaxations, and for the conjunction of the two. In each case, a randomized algorithm constructs such arrays in expected polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Alon, N., Spencer, J.H.: The probabilistic method, 3rd edn. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ (2008)

  2. Becker, B., Simon, H.U.: How robust is the n-cube? Inform. Comput. 77, 162–178 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bryce, R.C., Chen, Y., Colbourn, C.J.: Biased covering arrays for progressive ranking and composition of web services. Int. J. Simul. Process Modell. 3(1/2), 80–87 (2007)

    Article  Google Scholar 

  4. Bshouty, N.H., Costa, A.: Exact learning of juntas from membership queries. Lect. Notes Artif. Intell. 9925, 115–129 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Cawse, J.N.: Experimental design for combinatorial and high throughput materials development. GE Glob. Res. Tech. Rep. 29, 769–781 (2002)

    Google Scholar 

  6. Chandra, A.K., Kou, L.T., Markowsky, G., Zaks, S.: On sets of boolean n-vectors with all k-projections surjective. Acta Inform. 20(1), 103–111 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chateauneuf, M.A., Colbourn, C.J., Kreher, D.L.: Covering arrays of strength 3. Des. Codes Crypt. 16, 235–242 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, B., Zhang, J.: Tuple density: a new metric for combinatorial test suites. In: Proceedings of the 33rd International Conference on Software Engineering, pp. 876–879. ICSE 2011, HI, USA (2011)

    Google Scholar 

  9. Colbourn, C.J.: Combinatorial aspects of covering arrays. Le Matematiche (Catania) 58, 121–167 (2004)

    MATH  Google Scholar 

  10. Colbourn, C.J.: Covering arrays and hash families. In: Crnkovič, D., Tonchev, V. (eds.) Information Security, Coding Theory, and Related Combinatorics, NATO Science for Peace and Security Series, pp. 99–135. IOS Press, (2011)

  11. Colbourn, C.J.: Conditional expectation algorithms for covering arrays. J. Comb. Math. Comb. Comput. 90, 97–115 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Damaschke, P.: Adaptive versus nonadaptive attribute-efficient learning. Mach. Learn. 41(2), 197–215 (2000)

    Article  MATH  Google Scholar 

  13. De Bonis, A., Gasieniec, L., Vaccaro, U.: Optimal Two-Stage algorithms for group testing problems. SIAM J. Comput. 34(5), 1253–1270 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Francetić, N., Stevens, B.: Asymptotic size of covering arrays: an application of entropy compression. Journal of Combinatorial Designs, to appear

  15. Gargano, L., Körner, J., Vaccaro, U.: Sperner capacities. Graphs Comb. 9, 31–46 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Godbole, A.P., Skipper, D.E., Sunley, R.A.: t-covering arrays: upper bounds and Poisson approximations. Comb. Probab. Comput. 5, 105–118 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Graham, N., Harary, F., Livingston, M., Stout, Q.: Subcube fault-tolerance in hypercubes. Inf. Comput. 102(2), 280–314 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gravier, S., Ycart, B.: S-constrained random matrices. DMTCS Proc. 0(1), (2006)

  19. Hartman, A.: Software and hardware testing using combinatorial covering suites. In: Golumbic, M.C., Hartman, I.B.A. (eds.) Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms, pp. 237–266. Springer, Norwell, MA (2005)

    Chapter  Google Scholar 

  20. Hartman, A., Raskin, L.: Problems and algorithms for covering arrays. Discret. Math. 284(1–3), 149–156 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9, 256–278 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jukna, S.: Extremal combinatorics: with applications in computer science, 1st edn. Springer Publishing Company, Incorporated, (2010)

  23. Katona, G.O.H.: Two applications (for search theory and truth functions) of Sperner type theorems. Period. Math. 3, 19–26 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kleitman, D., Spencer, J.: Families of k-independent sets. Discret. Math. 6, 255–262 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kuhn, D.R., Kacker, R., Lei, Y.: Introduction to combinatorial testing. CRC Press (2013)

  26. Kuhn, D.R., Mendoza, I.D., Kacker, R.N., Lei, Y.: Combinatorial coverage measurement concepts and applications. In: 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation Workshops (ICSTW), pp. 352–361 (2013)

  27. Lovász, L.: On the ratio of optimal integral and fractional covers. Discret. Math. 13(4), 383–390 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Maximoff, J.R., Trela, M.D., Kuhn, D.R., Kacker, R.: A method for analyzing system state-space coverage within a t-wise testing framework (2010)

  29. Meagher, K., Stevens, B.: Group construction of covering arrays. J. Combin. Des. 13, 70–77 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma. J. ACM 57(2), Art. 11, 15 (2010)

    Article  MATH  Google Scholar 

  31. Sarkar, K., Colbourn, C.J.: Two-stage algorithms for covering array construction. submitted for publication

  32. Sarkar, K., Colbourn, C.J.: Upper bounds on the size of covering arrays. ArXiv e-prints (2016)

  33. Shasha, D.E., Kouranov, A.Y., Lejay, L.V., Chou, M.F., Coruzzi, G.M.: Using combinatorial design to study regulation by multiple input signals: A tool for parsimony in the post-genomics era. Plant Physiol. 127, 1590–2594 (2001)

    Article  Google Scholar 

  34. Stein, S.K.: Two combinatorial covering theorems. J. Comb. Theory Ser. A 16, 391–397 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sümer, O.: Partial covering of hypergraphs. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pp. 572–581. Society for Industrial and Applied Mathematics, PA, USA (2005)

    Google Scholar 

  36. Tong, A.J., Wu, Y.G., Li, L.D.: Room-temperature phosphorimetry studies of some addictive drugs following dansyl chloride labelling. Talanta 43(9), 1429—1436 (1996)

    Article  Google Scholar 

  37. Vazirani, V.V.: Approximation algorithms. Springer-Verlag New York, Inc., NY, USA (2001)

    MATH  Google Scholar 

Download references

Acknowledgments

Research of KS and CJC was supported in part by the National Science Foundation under Grant No. 1421058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Sarkar.

Additional information

This article is part of the Topical Collection on Special Issue on Combinatorial Algorithms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, K., Colbourn, C.J., De Bonis, A. et al. Partial Covering Arrays: Algorithms and Asymptotics. Theory Comput Syst 62, 1470–1489 (2018). https://doi.org/10.1007/s00224-017-9782-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-017-9782-9

Keywords