Skip to main content
Log in

Bounded-Depth Succinct Encodings and the Structure they Imply on Graphs

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We study the complexity of graph problems succinctly encoded by bounded depth circuits and the existence of upward translation theorems for these models. While almost all succinct encodings have an upward translation theorem for some type of reduction, we prove that such theorems for CNF- and DNF-encoded graphs and for the most studied reductions do not exist. In contrast, we show that there are upward translation theorems for AC0 circuits of depth at least 3. This implies that the complexity of the succinct versions of problems complete for NP (under quantifier-free reductions), encoded by such circuits, have an exponential blow-up. We adapt these results to problems on explicitly given graphs with the same structural properties as graphs encoded by bounded depth circuits. We define a graph class hierarchy \(\mathcal {I}^{k}\) which consists of at most k alternating unions and intersections of edge-sets in \(\mathcal {I}^{0}\), a class which only consists of single bicliques. We show that the complexity of every NP-complete problem (under quantifier-free reductions) collapses to the second level: on graphs in \(\mathcal {I}^{2}\) the problem is already NP-complete. Finally, we show that by restricting \(\mathcal {I}^{2}\) to use only sub-logarithmic many intersections we get graphs for which Dominating Set is not NP-complete unless the Exponential Time Hypothesis is false. In contrast, a degree of O(log n) is enough for NP-completeness. Therefore, Dominating Set on \(\mathcal {I}^{2}\) graphs with intersection-degree O(logδ(n)) has either a spontaneous transition from P (for all δ < 1) to NP-complete (for δ = 1), or is NP-intermediate on the restricted graph class (for some δ < 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If a class C may only use time or space bounded by a set of functions {f i (n)} i=1,2,…, then e x p C should denote the class with the same resource bounded by \(\{2^{f_{i}(n)}\}_{i = 1, 2, \ldots }\). For example, if C = NP, then e x p C = NEXP.

  2. As we will use both concepts simultaneously, we need two different notions and therefore deviate from the usual notation.

  3. In this notation, constant does not mean the value is fixed for all inputs but rather that it is a single element in the universe as opposed to relations over the universe.

  4. This is just a brute-force transformation of O RA N D into A N DO R which canonly be done in polynomial-time as the fan-in of the disjunction gate is bounded by the constant o ∈ ℕ and the fan-in of the conjunction is bounded by a polynomial.

  5. For every n, there are only p o l y(n) many non-isomorphic bicliques (or their complements) of size at most n.

References

  1. Alon, N.: Covering graphs by the minimum number of equivalence relations. Combinatorica 6(3), 201–206 (1986). doi:10.1007/BF02579381

    Article  MathSciNet  MATH  Google Scholar 

  2. Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity theory Proceedings of the 27th Annual Symposium on Foundations of Computer Science, SFCS’86, pp 337–347. IEEE Computer Society, Washington (1986), doi:10.1109/SFCS.1986.15

    Google Scholar 

  3. Balcázar, J.L., Lozano, A., Torán, J.: The complexity of algorithmic problems on succinct instances. Computer Science, Research and Applications, pp 351–377. Springer, US (1992)

    Google Scholar 

  4. Chlebík, M., Chlebíková, J.: Approximation hardness of dominating set problems in bounded degree graphs. Inf. Comput. 206(11), 1264–1275 (2008). doi:10.1016/j.ic.2008.07.003

    Article  MathSciNet  MATH  Google Scholar 

  5. Cook, S.A.: A hierarchy for nondeterministic time complexity. J. Comput. Syst. Sci. 7(4), 343–353 (1973). doi:10.1016/S0022-0000(73)80028-5

    Article  MathSciNet  MATH  Google Scholar 

  6. Dahlhaus, E.: Reduction to NP-complete problems by interpretations Logic and Machines: Decision Problems and Complexity, Proceedings of the Symposium “Rekursive Kombinatorik” held from May 23-28, 1983 at the Institut für Mathematische Logik und Grundlagenforschung der Universität Münster/Westfalen, pp. 357–365 (1983), doi:10.1007/3-540-13331-3_51

  7. Das, B., Scharpfenecker, P., Torán, J.: CNF And DNF succinct graph encodings Information and Computation. doi:10.1016/j.ic.2016.06.009(2016)

  8. Eaton, N., Rödl, V.: Graphs of small dimensions. Combinatorica 16(1), 59–85 (1996). doi:10.1007/BF01300127

    Article  MathSciNet  MATH  Google Scholar 

  9. Ebbinghaus, H., Flum, J.: Finite Model Theory. Perspectives in Mathematical Logic, Springer (2005)

  10. Eiter, T., Gottlob, G., Mannila, H.: Adding disjunction to datalog (extended abstract) Proceedings of the 13th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems - PODS’94, pp 267–278. ACM Press, New York (1994), doi:10.1145/182591.182639

    Google Scholar 

  11. Galperin, H., Wigderson, A.: Succinct representations of graphs. Inf. Control. 56(3), 183–198 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976). doi:10.1016/0304-3975(76)90059-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Impagliazzo, R., Paturi, R.: On the Complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001). doi:10.1006/jcss.2000.1727

    Article  MathSciNet  MATH  Google Scholar 

  14. Impagliazzo, R., Paturi, R., Zane, F.: Which Problems Have Strongly Exponential Complexity?. J. Comput. Syst. Sci. 63(4), 512–530 (2001). doi:10.1006/jcss.2001.1774

    Article  MathSciNet  MATH  Google Scholar 

  15. Jukna, S.: On graph complexity. Comb. Probab. Comput. 15(6), 855–876 (2006). doi:10.1017/S0963548306007620

    Article  MathSciNet  MATH  Google Scholar 

  16. Jukna, S.: On covering graphs by complete bipartite subgraphs. Discret. Math. 309(10), 3399–3403 (2009). doi:10.1016/j.disc.2008.09.036

    Article  MathSciNet  MATH  Google Scholar 

  17. Jukna, S.: On set intersection representations of graphs. Journal of Graph Theory 61(1), 55–75 (2009). doi:10.1002/jgt.20367

    Article  MathSciNet  MATH  Google Scholar 

  18. Mahaney, S.R.: Sparse complete sets for NP: Solution of a Conjecture of Berman and Hartmanis. J. Comput. Syst. Sci. 25(2), 130–143 (1982). doi:10.1016/0022-0000(82)90002-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Rödl, V., Ruciński, A.: Bipartite coverings of graphs. Comb. Probab. Comput. 6(3), 349–352 (1997). doi:10.1017/S0963548397003064

    Article  MathSciNet  MATH  Google Scholar 

  20. Seiferas, J.I., Fischer, M.J., Meyer, A.R.: Separating nondeterministic time complexity classes. J. ACM 25(1), 146–167 (1978). doi:10.1145/322047.322061

    Article  MathSciNet  MATH  Google Scholar 

  21. Stewart, I.A.: On completeness for NP via projection translations. Mathematical Systems Theory 27(2), 125–157 (1994). doi:10.1007/BF01195200

    Article  MathSciNet  MATH  Google Scholar 

  22. Veith, H.: Languages represented by Boolean formulas. Inf. Process. Lett. 63 (5), 251–256 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Veith, H.: How to encode a logical structure by an OBDD Proceedings 13th IEEE Conference on Computational Complexity, pp 122–131. IEEE Computer Society (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Scharpfenecker.

Additional information

The author of this work has been supported by DFG grant TO 200/3-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scharpfenecker, P. Bounded-Depth Succinct Encodings and the Structure they Imply on Graphs. Theory Comput Syst 62, 1125–1143 (2018). https://doi.org/10.1007/s00224-017-9787-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-017-9787-4

Keywords

Navigation