Skip to main content
Log in

The Containment Problem for Unambiguous Register Automata and Unambiguous Timed Automata

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We investigate the complexity of the containment problem “Does \(L(\mathcal {A})\subseteq L({\mathscr{B}})\) hold?” for register automata and timed automata, where \({\mathscr{B}}\) is assumed to be unambiguous and \(\mathcal {A}\) is arbitrary. We prove that the problem is decidable in the case of register automata over \((\mathbb N,=)\), in the case of register automata over \((\mathbb Q,<)\) when \({\mathscr{B}}\) has a single register, and in the case of timed automata when \({\mathscr{B}}\) has a single clock. We give a 2-EXPSPACE algorithm in the first case, whose complexity is a single exponential in the case that \({\mathscr{B}}\) has a bounded number of registers. In the other cases, we give an EXPSPACE algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. We note that this coincides with the notion of support for a finite configuration, in the terminology of set theory with atoms. Similarly, some notions that we define hereafter are classical in the “atom” terminology. We choose to ignore this terminology for the sake of clarity.

  2. Note the structural similarity to the unambiguous register automaton in Fig. 1.

References

  1. Alur, R., Dill, D L: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Colcombet, T.: Forms of determinism for automata (invited talk). In: Dürr, C, Wilke, T (eds.) 29th International Symposium on Theoretical Aspects of Computer Science, STACS 2012, February 29th - March 3rd, 2012, Paris, France, Vol 14 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp 1–23 (2012), https://doi.org/10.4230/LIPIcs.STACS.2012.1

  3. Colcombet, T.: Unambiguity in automata theory. In: Shallit, J, Okhotin, A (eds.) Descriptional Complexity of Formal Systems - 17th International Workshop, DCFS 2015, Waterloo, ON, Canada, June 25-27, 2015. Proceedings, vol 9118 of Lecture Notes in Computer Science, pp 3–18. Springer, New York (2015), https://doi.org/10.1007/978-3-319-19225-3_1

  4. Daviaud, L., Jurdzinski, M., Lazic, R., Mazowiecki, F., Pérez, G A, Worrell, J.: When is containment decidable for probabilistic automata?. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pp 121:1–121:14 (2018), https://doi.org/10.4230/LIPIcs.ICALP.2018.121

  5. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. ACM Trans. Comput. Log. 10(3) https://doi.org/10.1145/1507244.1507246 (2009)

  6. Figueira, D.: Alternating register automata on finite words and trees. Log. Meth. Comput. Sci. 8 (1) https://doi.org/10.2168/LMCS-8(1:22)2012 (2012)

  7. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and primitive-recursive bounds with Dickson’s lemma. In: Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24, 2011, Toronto, Ontario, Canada, IEEE Computer Society, pp 269–278 (2011), https://doi.org/10.1109/LICS.2011.39

  8. Figueira, D., Hofman, P., Lasota, S.: Relating timed and register automata. Math. Struct. Comput. Sci. 26(6), 993–1021 (2016). https://doi.org/10.1017/S0960129514000322

    Article  MathSciNet  MATH  Google Scholar 

  9. Fijalkow, N., Riveros, C., Worrell, J.: Probabilistic automata of bounded ambiguity. In: Meyer, R, Nestmann, U (eds.) 28th International Conference on Concurrency Theory, CONCUR 2017, September 5-8, 2017, Berlin, Germany, vol 85 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp 19:1–19:14 (2017), https://doi.org/10.4230/LIPIcs.CONCUR.2017.19

  10. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2), 329–363 (1994). https://doi.org/10.1016/0304-3975(94)90242-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaminski, M., Zeitlin, D.: Finite-memory automata with non-deterministic reassignment. Int. J. Found. Comput. Sci. 21(05) (2010)

  12. Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found. Comput. Sci. 16(5), 975–984 (2005). https://doi.org/10.1142/S0129054105003418

    Article  MathSciNet  MATH  Google Scholar 

  13. Skrzypczak, M.: Unambiguous languages exhaust the index hierarchy. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pp 140:1–140:14 (2018), https://doi.org/10.4230/LIPIcs.ICALP.2018.140

  14. Mottet, A., Quaas, K.: The containment problem for unambiguous register automata. In: Niedermeier, R, Paul, C (eds.) 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, vol 126 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp 53:1–53:15 (2019), https://doi.org/10.4230/LIPIcs.STACS.2019.53

  15. Mottet, A., Quaas, K.: On the containment problem for unambiguous single-register automata with guessing. CoRR, abs/1905.12445, arXiv:1905.12445 (2019)

  16. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets. ACM Trans. Comput. Log. 5(3), 403–435 (2004). https://doi.org/10.1145/1013560.1013562

    Article  MathSciNet  MATH  Google Scholar 

  17. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata: Closing a decidability gap. In: 19th IEEE Symposium on Logic in Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings, IEEE Computer Society, pp 54–63 (2004), https://doi.org/10.1109/LICS.2004.1319600

  18. Raskin, M.: A superpolynomial lower bound for the size of non-deterministic complement of an unambiguous automaton. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pp 138:1–138:11 (2018), https://doi.org/10.4230/LIPIcs.ICALP.2018.138

  19. Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory automata. Theor. Comput. Sci. 231(2), 297–308 (2000). https://doi.org/10.1016/S0304-3975(99)00105-X

    Article  MathSciNet  MATH  Google Scholar 

  20. Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with higman’s lemma. In: Aceto, L, Henzinger, M, Sgall, J (eds.) Automata, languages and programming - 38th international colloquium, ICALP 2011, zurich, switzerland, july 4-8, 2011, proceedings, part II, vol 6756 of Lecture Notes in Computer Science, pp 441–452. Springer, New York (2011), https://doi.org/10.1007/978-3-642-22012-8_35

  21. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In: Ésik, Z (ed.) Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual Conference of the EACSL, Szeged, Hungary, September 25-29, 2006, Proceedings, vol 4207 of Lecture Notes in Computer Science, pp 41–57. Springer, New York (2006), https://doi.org/10.1007/11874683_3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Mottet.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Theoretical Aspects of Computer Science (2019)

Guest Editors: Rolf Niedermeier and Christophe Paul

The first author received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No 771005, CoCoSym).

The second author was supported by Deutsche Forschungsgemeinschaft (DFG), Project 406907430

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mottet, A., Quaas, K. The Containment Problem for Unambiguous Register Automata and Unambiguous Timed Automata. Theory Comput Syst 65, 706–735 (2021). https://doi.org/10.1007/s00224-020-09997-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-020-09997-2

Keywords

Navigation