Skip to main content
Log in

Geometric analysis of nondeterminacy in dynamical systems

Towards a geometric analysis of concurrent systems

  • Original article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

This article intends to provide some new insights into concurrency using ideas from the theory of dynamical systems. Inherently discrete concurrency corresponds to a parallel continuous concept: a discrete state space corresponds to a differential manifold, an execution path corresponds to a flow line of a dynamical system. To model non-determinacy within dynamical systems, we introduce a new geometrical object, a section cone. A section cone is a convex set in the space of vector fields, all elements having the same singular points. We show that it is enough to consider flow lines of a single vector field in order to capture the behavior of all flow lines in the section cone up to homotopy (corresponding to equivalence of executions).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arwin M. (1980). Smooth Dynamical Systems. World Scientific, Singapore

    Google Scholar 

  2. Aubin, J.-P.: Viability Theory (Systems and Control: Foundations and Applications). Birkhauser (1991)

  3. Banyaga A. and Hurtubise D. (2004). Lectures on Morse Homology. Kluwer, Dordrecht

    MATH  Google Scholar 

  4. Barker G. (1981). Theory of cones. Linear Algebra and Its Applications. 39: 263–291

    Article  MATH  MathSciNet  Google Scholar 

  5. Cohen, R.: Topics in Morse Theory: Lecture Notes. Stanford University (1991)

  6. Fahrenberg, U.: Higher-dimensional automata from a topological viewpoint. Ph.D. Thesis, University (2005)

  7. Fajstrup L., Goubault E. and Raussen M. (2006). Algebraic Topology and Concurrency. Theoretical Computer Science 357: 241–278

    Article  MATH  MathSciNet  Google Scholar 

  8. Goubault, E.: The geometry of concurrency. Ph.D. Thesis, Ecole Normale Superieure, Paris (1995)

  9. Goubault, E., Jensen, T.: Homology of higher dimensional automata. In: CONCUR’92, Lecture Notes in Computer Science, vol. 630. Springer, Heidelberg (1992)

  10. Handron D. (2002). Generalized billiard paths and Morse theory for manifolds with corners. Topology Appl. 126: 83–118

    Article  MATH  MathSciNet  Google Scholar 

  11. Hirsch M.W. (1976). Differential Topology. Springer, Heidelberg

    MATH  Google Scholar 

  12. Hirsch M.W. and Smale S. (1974). Differential Equations, Dynamical Systems and Linear Algebra. Academic, New York

    MATH  Google Scholar 

  13. Meyer K.R. (1968). Energy functions for Morse-Smale systems. Am. J. Math. 90(4): 1031–1040

    Article  MATH  Google Scholar 

  14. Milnor J. (1973). Morse Theory. Annals of Mathematics Studies. Princeton University Press, Princeton

    Google Scholar 

  15. Munkres J. (2000). Topology. Prentice-Hall, Englewood Chiffs

    MATH  Google Scholar 

  16. Newhouse S.E., Palis J. and Takens F. (1983). Bifurcations and stability of family of diffeomorphisms. mathématiques de l’I.H.É.S. 57: 5–71

    MATH  MathSciNet  Google Scholar 

  17. Palis J. and de Melo W. (1982). Geometric Theory of Dynamical Systems. Springer, Heidelberg

    MATH  Google Scholar 

  18. Palis, J., Smale, S.: Structural stability theorems. In: Global Analysis. Proceedings of Symposium in Pure, Math. vol. XIV. Americal Math. Soc., pp. 223–231 (1970)

  19. Peixoto M. (1962). Structural stability on two-dimensional manifolds. Topology 1: 101–120

    Article  MATH  MathSciNet  Google Scholar 

  20. Pratt, V.: Modeling concurrency with geometry. In: 18th ACM Symposium on Principles of Languages, pp. 311–322. ACM Press, New York (1991)

  21. Schwarz, M.: Morse Homology. Birkhauser (1993)

  22. Shub M. (1986). Global Stability of Dynamical Systems. Springer, Heidelberg

    Google Scholar 

  23. Smirnov, G.V.: Introduction to the Theory of Differential Inclusion. AMS (2002)

  24. van Glabbeek R. (2006). On the expressiveness of higher dimensional automata. Theoret. Comput. Sci. 356: 265–290

    Article  MATH  MathSciNet  Google Scholar 

  25. Wisniewski R.: Flow Lines under Perturbations within Section Cones. Ph.D. Thesis, Aalborg University (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Wisniewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wisniewski, R., Raussen, M. Geometric analysis of nondeterminacy in dynamical systems. Acta Informatica 43, 501–519 (2007). https://doi.org/10.1007/s00236-006-0037-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-006-0037-5

Keywords

Navigation