Skip to main content
Log in

Formale Logiken für unscharfe Mengen

  • HAUPTBEITRAG
  • FORMALE LOGIKEN FÜR UNSCHARFE MENGEN
  • Published:
Informatik-Spektrum Aims and scope

Zusammenfassung

Wie für jede mathematische Theorie nutzt man auch für die systematische Darstellung der Theorie der unscharfen Mengen vorteilhaft den Rahmen einer formalen Logik. In diesem Falle bietet es deutliche Vorteile, dabei auf mehrwertige Logiken Bezug zu nehmen.

Hier werden die grundlegenden Ideen und Hauptlinien der technischen Entwicklungen des vergangenen halben Jahrhunderts skizziert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Běhounek B, Haniková Z (2015) Set theory and arithmetic in fuzzy logic. In: F. Montagna (ed) Petr Hájek on Mathematical Fuzzy Logic, vol 6 of Outstanding Contributions to Logic, Springer Internat, Switzerland, pp 63–89

  2. Bělohlávek R, Vychodil V (2005) Fuzzy Equational Logic, vol 186 of Studies in Fuzzyness and Soft Computing, Springer, Berlin

  3. Cignoli R, Esteva F, Godo L, Torrens A (2000) Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft Comput 4:106–112

    Article  Google Scholar 

  4. Cintula P, Hájek P (2010) Triangular norm based predicate fuzzy logics. Fuzzy Set Syst 161:311–346

    Article  MATH  Google Scholar 

  5. Cintula R, Hájek P, Noguera C (eds) (2011) Handbook of Mathematical Fuzzy Logic, vol 37–38 of Studies in Logic, College Publications, London

  6. Esteva F, Godo L (2001) Monoidal t-norm based logic: toward a logic for left-continuous t-norms. Fuzzy Set Syst 124:271–288

    Article  MATH  MathSciNet  Google Scholar 

  7. Esteva F, Godo L, Gottwald S, and Montagna F (2015) Introduction. In: Montagna F (ed) Petr Hájek on Mathematical Fuzzy Logic, vol 6 of Outstanding Contributions to Logic. Springer Internat, Switzerland, pp 3–20

    Google Scholar 

  8. Esteva F, Godo L, and Montagna F (2004) Equational characterization of the subvarieties of BL generated by t-norm algebras. Studia Logica 76:161–200

    Article  MATH  MathSciNet  Google Scholar 

  9. Galatos N, Jipsen P, Kowalski T, Ono H (2007) Residuated Lattices: An Algebraic Glimpse at Substructural Logics, vol 151 of Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam

    Google Scholar 

  10. Gerla G (2001) Fuzzy Logic. Mathematical Tools for Approximate Reasoning, vol 11 of Trends in Logic. Kluwer Academic Publishers

  11. Goguen JA (1968–69) The logic of inexact concepts. Synthese 19:325–373

  12. Gottwald S (1989) Mehrwertige Logik. Logica Nova. Akademie-Verlag, Berlin

    Google Scholar 

  13. Gottwald S (2001) A Treatise on Many-Valued Logics, vol 9 of Studies in Logic and Computation. Research Studies Press, Baldock

    Google Scholar 

  14. Gottwald S (2008) Mathematical fuzzy logics. B Symb Log 14:210–239

    Article  MATH  MathSciNet  Google Scholar 

  15. Gottwald S and Hájek P (2005) T-norm based mathematical fuzzy logics. In: Klement EP, Mesiar R (eds) Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms. Elsevier, Dordrecht, pp 275–299

    Chapter  Google Scholar 

  16. Hájek P (1998) Metamathematics of Fuzzy Logic. Trends in Logic. 4. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  17. Hájek P (2001) On very true. Fuzzy Set Syst 124:329–333

    Article  MATH  Google Scholar 

  18. Hájek P, Godo L, Esteva F (1995) Fuzzy logic and probability. In: Proceedings of the 11th Annual Conference on Uncertainty in Artificial Intelligence UAI ’95, Montreal, pp 237–244

  19. Hájek P, Godo L, Esteva F (1996) A complete many-valued logic with product-conjunction. Arch Math Logic 35:191–208

    Article  MATH  MathSciNet  Google Scholar 

  20. Hájek P, Novák V (2003) The sorites paradox and fuzzy logic. Int J Gen Syst 32:373–383

    Article  MATH  MathSciNet  Google Scholar 

  21. Höhle U (1994) Monoidal logic. In: Kruse R, Gebhardt J, Palm R (eds) Fuzzy Systems in Computer Science, Artificial Intelligence. Verlag Vieweg, Wiesbaden, pp 233–243

    Chapter  Google Scholar 

  22. Höhle U (1996) On the fundamentals of fuzzy set theory. J Math Anal Appl 201:786–826

    Article  MATH  MathSciNet  Google Scholar 

  23. Jenei S, Montagna F (2002) A proof of standard completeness for Esteva and Godo’s logic MTL. Studia Logica 70:183–192

    Article  MATH  MathSciNet  Google Scholar 

  24. Klaua D (1965) Über einen Ansatz zur mehrwertigen Mengenlehre. Monatsber Deutsch Akad Wiss Berlin 7:859–867

    MATH  MathSciNet  Google Scholar 

  25. Klaua D (1966) Über einen zweiten Ansatz zur mehrwertigen Mengenlehre. Monatsber Deutsch Akad Wiss Berlin 8:161–177

    MATH  MathSciNet  Google Scholar 

  26. Klement EP, Mesiar R, Pap E (2000) Triangular Norms. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  27. Metcalfe G (2011) Proof theory for mathematical fuzzy logic. In: Cintula P, Hájek P, Noguera C (eds) Handbook of Mathematical Fuzzy Logic, vol. 1, vol 37 of Studies in Logic, chapter 3. College Publ., London, pp 209–282

    Google Scholar 

  28. Metcalfe G, Olivetti N, Gabbay D (2009) Proof Theory for Fuzzy Logics, vol 36 of Applied Logic Series. Springer, New York

    Google Scholar 

  29. Novák V (2005) On fuzzy type theory. Fuzzy Set Syst 149(2):235–273

    Article  MATH  Google Scholar 

  30. Novák V (2007) Mathematical fuzzy logic in modeling of natural language semantics. In: Fuzzy Logic, vol 215 of Stud. Fuzziness Soft Comput. Springer, Berlin, pp 135–172

  31. Novák V (2008) A comprehensive theory of trichotomous evaluative linguistic expressions. Fuzzy Set Syst 159(22):2939–2969

    Article  MATH  Google Scholar 

  32. Novák V, Perfilieva I, Mockor J (1999) Mathematical Principles of Fuzzy Logic. Kluwer Acad. Publ., Boston/Dordrecht/London

    Book  MATH  Google Scholar 

  33. Pavelka J (1979) On fuzzy logic. I–III. Zeitschr math Logik 25:45–52; 119–134; 447–464

    MATH  MathSciNet  Google Scholar 

  34. Ruitenburg W (1998) Basic predicate calculus. Notre Dame J Formal Logic 39:18–46

    Article  MATH  MathSciNet  Google Scholar 

  35. Schweizer B, Sklar A (1983) Probabilistic Metric Spaces. North-Holland Publ. Comp., Amsterdam

    MATH  Google Scholar 

  36. Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

  37. Zadeh LA (1968) Probability measures for fuzzy events. J Math Anal Appl 23:421–427

    Article  MATH  MathSciNet  Google Scholar 

  38. Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Set Syst 1:3–28

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Gottwald.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gottwald, S. Formale Logiken für unscharfe Mengen. Informatik Spektrum 38, 533–542 (2015). https://doi.org/10.1007/s00287-015-0930-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00287-015-0930-9

Navigation